Cho biểu thức B = 1/2^3 + 1/3^3 + 1/4^3 + .. + 1/2021^3. Chứng minh rằng: B<1/2^2
Chứng Minh Rằng
a. cho biểu thức A= 3 + 3^2+ 3^3+ 3^4+...+ 3^100 và B= 3^100-1.Chứng Minh rằng : A<B
b. Cho A= 1+4+4^2+...+4^99, B= 4^100. Chứng Minh Rằng : A<B/3
\(A=3+3^2+3^3+...+3^{100}\)
\(\Leftrightarrow3A=3^2+3^3+3^4+3^5+....+3^{101}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)
\(\Leftrightarrow2A=3^{101}-3\)
\(\Leftrightarrow A=\frac{3^{101}-3}{2}< 3^{100}-1\)
\(\Leftrightarrow A< B\)
a. tính A = 3+3^2+3^3+3^4+.....+3^100
3A=3^2+3^3+3^4+3^5+....+3^100
3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+3^4+.....+3^100)=3^101-3=3^100
mà B=3^100-1 => A<B
\(A=1+4+4^2+...+4^{99}\)
\(\Leftrightarrow4A=4+4^2+4^3+...+4^{100}\)
\(\Leftrightarrow3A=4^{100}-1\)
\(\Leftrightarrow A=\frac{4^{100}-1}{3}< \frac{4^{100}}{3}\)
hay A<B (đpcm)
Câu 24: Cho biểu thức: A=1/2+1/3+1/4+.........+1/2021+1/2022 Và B=2021/1+2020/2+2019/3+.........+3/2019+2020+1/2021
B/A
\(=\dfrac{1+\dfrac{2020}{2}+1+\dfrac{2019}{3}+...+1+\dfrac{1}{2021}+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}\)
\(=\dfrac{2022\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}=2022\)
cho biểu thức A= 5+4^2+4^3 +...+4^2020+4^2021. chứng minh 3A+1 chia hết cho 4^2021
Lời giải:
$A-1=4+4^2+4^3+...+4^{2020}+4^{2021}$
$4(A-1)=4^2+4^3+4^4+....+4^{2021}+4^{2022}$
$\Rightarrow 4(A-1)-(A-1)=4^{2022}-4$
$3(A-1)=4^{2022}-4$
$\Rightarrow 3A+1=4^{2022}\vdots 4^{2021}$
1, cho a và b là 2 số tự nhiên. Biết a chia cho 3 dư 1 , b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2
2, chứng minh rằng biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
3, chứng minh rằng biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3 với mọi giá trị của n
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
so sánh R=5+5^5+5^7+...+5^99 và J= 5^101-5
chứng minh rằng biểu thức a là 1 số lẻ biết
A=1+2+2^2+2^3+...+2^350
chứng minh rằng biểu thức b chia hết cho 3 biết
B=3+3^2+3^4+...+3^150
tích mình đi
ai tích mình
mình ko tích lại đâu
thanks
Bài 1:
Cho s=1+2+2^2+2^3+...+2^9.chứng minh rằng s nhỏ hơn 5×2^8
Bài2 :
Cho biểu thức b=2018+2018^2+2018^3+....+2018^100.chứng minh b chia hết cho 2019
Bài 3:
Cho biểu thức a=1+2+2^2+2^3+...+2^48+2^49.tìm số tự nhiên x.biết a+1=2^n-1
Bài 4:
Tìm số tự nhiên x biết :
1+2+2^2+2^3+....+2^x=128
Bai5 :
Cho biểu thức b=3+3^2^3^3+...+3^99+3^100.tìm x biết 2×b+3=3^x
Bài 6:
Cho biểu thức a=4+2^3+2^4+2^5+....+2^2003+2^2004.chứng minh rằng a là một lũy thừa của 2
Giúp mik với mik đang cần gấp
Bài 1 : Ta có : S = 1 + 2 + 22 + 23 + ... + 29
2S = 2(1 + 2 + 22 + 23 + ... + 29)
2S = 2 + 22 + 23 + ... + 210
2S - S = (2 + 22 + 23 + ... + 210) - (1 + 2 + 22 + 23 + ... + 29)
S = 210 - 1 = 28.4 - 1
Vậy S < 5 x 28
Bn có thể giải cho mik bài2 và bài4 đc ko ngay bây giờ nhé
Bài 1 :
Cho A = \(1+3+3^2+....+3^{11}\) . Chứng minh rằng :
a) A chia hết cho 13 b) A chia hết cho 40
Bài 2 :
Cho C = \(3+3^2+3^3+3^4+......+3^{100}\) . Chứng minh rằng : C chia hết cho 40 .
Bài 3 :
Cho biểu thức : M = \(1+3+3^2+3^3+......+3^{118}+3^{119^{ }}\)
a) Thu gọn biểu thức M b) Biểu thức M có chia hết cho 5 , 13 không . Vì sao ?
Bài 4 :
Cho S = \(5+5^2+5^3+5^4+5^5+5^6+.......+5^{2012}\) . Chứng minh rằng S chia hết cho 65.
Bài 1 : \(A=1+3+3^2+...+3^{31}\)
a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)
\(\Rightarrow A=13+3^9.13\)
\(\Rightarrow A=13.\left(1+...+3^9\right)\)
\(\Rightarrow A⋮13\)
b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=40+...+3^8.40\)
\(\Rightarrow A=40.\left(1+...+3^8\right)\)
\(\Rightarrow A⋮40\)
Bài 2:
Ta có: \(C=3+3^2+3^4+...+3^{100}\)
\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)
\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)
\(\Rightarrow3.40+...+3^{97}.40\)
Vì tất cả các số hạng của biểu thức C đều chia hết cho 40
\(\Rightarrow C⋮40\)
Vậy \(C⋮40\)
b) Cho biểu thức A = 1 + 3^2+3^4+...+3^100
Chứng minh rằng 8A – 26 chia hết cho 54.
\(A=1+3^2+3^4+...+3^{100}\)
\(9A=3^2+3^4+3^6+...+3^{102}\)
\(8A=3^{102}-1\)
\(\Rightarrow8A-26=3^{102}-1-26=3^{102}-27\)
Vì \(3^{102}-27⋮3\)(1)
\(3^{102}-27⋮2\)(\(3^{102}-27\)là số chẵn ) (2)
\(3^{102}-27=9\left(3^{100}-3\right)\)\(\Rightarrow3^{102}-27⋮9\)(3)
Từ (1) , (2), (3) \(\Rightarrow8A-26⋮54\)\(\left(\left(2,3,9\right)=1\right)\)
vậy ...
\(A=1+3^2+3^4+...+3^{100}\)
\(\Leftrightarrow3^2A=3^2\left(1+3^2+3^4+....+3^{100}\right)\)
\(\Leftrightarrow9A=3^2+3^4+3^6+...+3^{102}\)
\(\Leftrightarrow9A-A=\left(3^2+3^4+3^6+....+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)
\(\Leftrightarrow8A=3^{102}-1\)
\(\Leftrightarrow8A-26=3^{102}-1-26=3^{102}-27\)
Ta có: \(3^{102}⋮3;27⋮3\Rightarrow3^{102}-27⋮3\left(1\right)\)
\(3^{102}-27⋮2\left(2\right)\)(3^102 -27 là số lẻ)
\(3^{102}-27=\left(3^2\right)^{51}-27=9^{51}-27⋮9\left(3\right)\)
(1)(2)(3) => 8A-26 chia hết cho 54 (đpcm)
Như các bạn đã trình bày: Chúng ta chứng minh được:
\(8A-26=3^{102}-27\)
Ta có: \(3^{102}-27⋮2\)( vì \(3^{102};27\)là số lẻ; hiệu 2 số lẻ là số chẵn )
và \(3^{102}-27=27\left(3^{99}-1\right)⋮27\)
vì ( 27; 2) = 1 và 27.2 = 54 nên: \(3^{102}-27⋮54\)
Cho B 1.2.3.....2020.(1+1/2+1/3+........+1/2020) Chứng minh rằng B chia hết cho 2021.