Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Lê Trân Châu
Xem chi tiết
Nguyễn Hoàng Minh
17 tháng 11 2021 lúc 8:14

a. Pytago: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)

AD là trung tuyến ứng cạnh huyền BC nên \(AD=\dfrac{1}{2}BC=2,5\left(cm\right)\)

b. Vì \(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\) nên AMDN là hcn

Vậy AD=MN

c. ABC vuông cân A thì AD là trung tuyến cũng là p/g

Do đó AMDN là hình thoi(1)

Lại có D là trung điểm BC,DM//AC(⊥AB) nên M là trung điểm AB

Cmtt ta được N là trung điểm AC

Mà AB=AC nên AM=AC

Kết hợp (1) ta được AMDN là hình vuông

Hưng Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 10 2021 lúc 13:49

a: Xét tứ giác AEMF có

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

Do đó: AEMF là hình chữ nhật

Nguyễn Lê Phước Thịnh
24 tháng 10 2021 lúc 22:20

b: \(AM=\dfrac{BC}{2}=\dfrac{\sqrt{3^2+4^2}}{2}=2.5\left(cm\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 11 2017 lúc 18:30

+ Ta có: D M C ^ = D M E ^ + E M C ^

Mặt khác: D M C ^ = A B C ^ + B D M ^ (góc ngoài tam giác)

Mà: D M E ^ = A B C ^ (gt) nên B D M ^ = E M C ^

+ Ta có: A B C ^ = A C B ^ (ΔABC cân tại A) và B D M ^ = E M C ^ (cmt)

=> ΔBDM ~ ΔCME (g - g)

=> B D C M = B M C E => BD.CE = CM.BM

Lại có M là trung điểm của BC và BC = 2a => BM = MC = a

=> BD.CE = a 2 không đổi

Đáp án: C

Không
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 6 2021 lúc 11:32

a) Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)

hay AC=4(cm)

Vậy: AC=4cm

b)Xét ΔADC vuông tại A và ΔABC vuông tại A có 

CA chung

AD=AB(gt)

Do đó: ΔADC=ΔABC(hai cạnh góc vuông)

c) Xét ΔEMD và ΔBMC có 

\(\widehat{EDM}=\widehat{BCM}\)(hai góc so le trong, ED//BC)

MD=MC(M là trung điểm của CD)

\(\widehat{EMD}=\widehat{BMC}\)(hai góc đối đỉnh)

Do đó: ΔEMD=ΔBMC(g-c-g)

Suy ra: ED=BC(hai cạnh tương ứng)

mà BC=CD(ΔCDA=ΔCBA)

nên ED=CD

hay ΔCDE cân tại D

subjects
Xem chi tiết
Phan Ngọc Bảo Trâm
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 12 2021 lúc 11:39

\(a,\) Vì M là trung điểm AD và BC nên ABDC là hình bình hành

Mà \(\widehat{BAC}=90^0\) nên ABDC là hình chữ nhật

\(b,\) Vì H,M là trung điểm AI và AD nên HM là đường trung bình \(\Delta ADI\)

\(\Rightarrow DI\text{//}HM\) hay \(DI//BC\)

Do đó BIDC là hình thang

Vì I đx với A qua BC nên \(AB=BI\) và BC là trung trực AI

Do đó \(\Delta ABI\) cân tại B

Suy ra BC là trung trực cũng là phân giác

Do đó \(\widehat{ABC}=\widehat{CBI}\left(1\right)\)

Lại có ABDC là hcn nên \(\widehat{BCD}+\widehat{ACB}=\widehat{ACD}=90^0\)

Mà \(\Delta ABC\bot A\) nên \(\widehat{ABC}+\widehat{ACB}=90^0\)

\(\Rightarrow\widehat{BCD}=\widehat{ABC}\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow\widehat{CBI}=\widehat{BCD}\)

Vậy BIDC là hình thang cân

Minh Nhật
Xem chi tiết
Phạm Hoàng Yến
Xem chi tiết
HằngAries
30 tháng 4 2020 lúc 21:47

ABDC E

a) Vì AD phân giác BACˆBAC^ (gt)

=> ABAC=BDDCABAC=BDDC (t/c đường p/g ΔΔ )

=> ABAC+AB=BDBD+DCABAC+AB=BDBD+DC (t/c TLT)

=> 1212+20=BDBC1212+20=BDBC

=> 1232=BD281232=BD28

=> BD=12⋅2832=10,5BD=12⋅2832=10,5 cm

Ta có: BD+DC=BCBD+DC=BC (D ∈∈ BC)

=> DC=28−10,5=17,5DC=28−10,5=17,5 cm

Xét ΔΔ ABC có: DE // AB (gt)

=> DEAB=DCBCDEAB=DCBC (hệ qủa ĐL Ta-lét)

=> DE=ABDCBC=12⋅17,528=7,5DE=AB⋅DCBC=12⋅17,528=7,5 cm

Khách vãng lai đã xóa
Huy Hoang
4 tháng 5 2020 lúc 9:53

Nguồn : hh

~ Chúc you học tốt ~

:)))

Khách vãng lai đã xóa
Huy Hoang
4 tháng 5 2020 lúc 9:54

Vào TKHĐ của mình là thấy nha 

:>>>

#Hoc_tot#

Khách vãng lai đã xóa
Bùi Quang Khánh
Xem chi tiết
Bùi Thị Khánh Linh
8 tháng 5 2022 lúc 19:29

a) Có: △ABC cân tại A => AB=AC

         và AI là tia p/g của góc ABC => góc BAI= góc CAI

Xét △ABI và △ ACI có

            AI chung

       góc BAI= góc CAI

       AB=AC

=>△ABI = △ ACI (c.g.c)

b)Có : △ABC cân tại A ; AI là tia p/g của góc ABC

=> AI cũng là đường trung tuyến của  △ABC

có :D là trung điểm của AC 

=> BD là đường trung tuyến của  △ ABC

trong  △ABC có 

    AI là đường trung tuyến thứ nhất

   BD là đường trung tuyến thứ hai

Mà 2 đường này cắt nhau tại M

=> M là trọng tâm của △ABC

BI=CI=BC/2=3(cm)

Có : △ABC cân tại A ; AI là tia p/g của góc ABC

=> AI cũng là đường cao

=> AI⊥BC

=> △ABI vuông tại I 

=> AI^2+ BI^2= AB^2

=> AI^2+9=25

  AI^2 = 16

=> AI = 4( cm)