1/2+1/6+1/12+1/20+...+1/x.[x+1]=2008/2009
Tìm số tự nhiên x biết :
1/2+1/6+1/12+1/20+....+1/x(x+1)=2008/2009
=>1/1.2+1/2.3=1/3.4+........+1/x.(x+1)=2008/2009
=>1-1/2+1/2-1/3+.....+1/x-1/x+1=1-1/2009
=>1-1/x+1=1-1/2009
=>-1/x=-1/2009
=>1/x=1/2009
=>x=2009
Nhớ k cho mình nha
Tìm số tự nhiên x biết rằng:
1/2+1/6+1/12+1/20+...+1/x(x+1)=2008/2009
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009}\)
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{2009}\)
\(1-\frac{1}{x+1}=\frac{2008}{2009}\)
\(\frac{1}{x+1}=1-\frac{2008}{2009}=\frac{1}{2009}\)
\(\Rightarrow x+1=2009\)
\(\Leftrightarrow x=2008\)
1. 3/2/3+ 1/1/5 - 2/5/3 + 5/3/5
2. 1/2+ 1/6 + 1/12+ 1/20 + 1/30+ 1/42
3. 3/5 = 13-x/ x+11
4.12x + x45 = 468
5.Cho A = 2007/2008 + 2008/2009 + 2009/2010
Cho B = 2007 + 2008 + 2009/ 2008 + 2009 +2010
Hãy so sánh A và B.
Các bạn giúp mk với nhé, Mk căm ơn rất nhiều!!!!!!!
Tìm số tự nhiên x biết:
1 phần 2 + 1 phần 6 + 1 phần 12 + ...+1 phần x(x+1)=2008 phần 2009.
Tim so tu nhien x biet:
1 phan 2+1 phan 6+1 phan 12+...+1 phan x(x+1)=2008 phan 2009
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009}\)
\(=>\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009}\)
\(=>\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{2009}\)
\(=>1-\frac{1}{x+1}=\frac{2008}{2009}=>\frac{1}{x+1}=1-\frac{2008}{2009}=\frac{1}{2009}\)
=>x+1=2009
=>x=2008
Vậy x=2008
1/2+1/6+1/12+...+1/x*(x+1)=2008/2009
1/1*2+1/2*3+1/3*4+...+1/x*(x+1)=2008/2009
1-1/2+1/2-1/3+1/3-1/4+...+1/x-1/(x+1)=2008/2009
1-1/x+1)=2008/2009
1/x+1=1-2008/2009
1/x+1=1/2009
nên x+1=2009
x=2009-1
x=2008 (tick nha)
Tìm số tự nhiên x biết
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}=\frac{2008}{2009}\)
Các bạn giải cụ thể cho mình nhé .
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009
}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{2009}\)
\(1-\frac{1}{x+1}=\frac{2008}{2009}\)
\(\frac{x+1-1}{x+1}=\frac{2008}{2009}\)
\(\frac{x}{x+1}=\frac{2008}{2009}\)
\(2009x=2008\left(x+1\right)\)
\(2009x=2008x+2008\)
\(2009x-2008x=2008\)
\(x=2008\)
Vậy x=2008
Ta có
1/x.(x+1) =2008-1/1.2-1/2.3-....
tự làm nhé!!
=> \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) + \(\frac{1}{4.5}\) +...+\(\frac{1}{x\left(x+1\right)}\) = \(\frac{2008}{2009}\)
=> \(\frac{1}{1}\) - \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{4}\) +...+ \(\frac{1}{x}\) - \(\frac{1}{x+1}\) = \(\frac{2008}{2009}\)
=> \(\frac{1}{1}\) - \(\frac{1}{x+1}\) = \(\frac{2008}{2009}\) => \(\frac{1}{x+1}\) = \(\frac{1}{1}\) - \(\frac{2008}{2009}\) = \(\frac{1}{2009}\) => x+1=2009 => x=2008. Vậy x=2008.
\(timx\\\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x.\left(x+1\right)}=\frac{2008}{2009}\)
Ta có : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x.\left(x+1\right)}=\frac{2008}{2009}\)
\(\Leftrightarrow\)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=\frac{2008}{2009}\)
\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{2009}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{2008}{2009}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2009}\)
\(\Leftrightarrow x+1=2009\)
\(\Leftrightarrow x=2008\)
Vậy x = 2008
\(=>\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{x.\left(x+1\right)}=\frac{2008}{2009}\)
\(=>1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{2009}\)
\(=>1-\frac{1}{x+1}=\frac{2008}{2009}\)
\(=>\frac{x}{x+1}=\frac{2008}{2009}=>x=2008\)
tinh nhanh
a) 1/6 + 1/12 + 1/20 + ............ + 1/110
b) 2008/2009 va 2007/2008
a) =\(\frac{1}{2\cdot3}\)+\(\frac{1}{3\cdot4}\)+....+\(\frac{1}{10\cdot11}\)=\(\frac{1}{2}\)-\(\frac{1}{11}\)=\(\frac{9}{22}\)
b)\(\frac{2008}{2009}\)=1 - \(\frac{1}{2009}\); \(\frac{2007}{2008}\)=1 - \(\frac{1}{2008}\)Do \(\frac{1}{2009}\)<\(\frac{1}{2008}\)nen 1 - \(\frac{1}{2009}\)>1 - \(\frac{1}{2008}\)
=> 2008/2009>2007/2008
a) 1/2x3+1/3x4+1/4x5+...+1/10x11
=1/2-1/3+1/3-1/4+1/4-1/5+...+1/10-1/11
=1/2-1/11
=9/22
a)1/2x3 + 1/3x4 + 1/4x5 + .........+1/10x11
= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ........+1/10 - 1/11
= 1/2 - 1/11
=9/22
b)1 - 2008/2009 = 1/2009 ; 1 - 2007/2008 = 1/2008
vì 1/2009 <1/2008
vậy 2008/2009>2007/2008
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+\left|x=\frac{1}{20}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
2. Tìm x, y, z biết\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
3.Tìm x\(a,2009-\left|x-2009\right|=x\)
\(b,\left|3x+2\right|=\left|5x-3\right|\)
Bài 1:
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
Ta thấy:
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\frac{10}{11}=0\)
\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)
Bài 2:
Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)
Bài 3:
a)\(2009-\left|x-2009\right|=x\)
\(\Rightarrow\left|x-2009\right|=2009-x\)
\(\Rightarrow\left|x-2009\right|=-\left(x-2009\right)\)
Vì GTTĐ của số âm bằng số đối của nó
\(\Rightarrow x-2009\le0\)
\(\Rightarrow x\le2009\)
Vậy với mọi \(x\le2009\) đều thỏa mãn
b)\(\left|3x+2\right|=\left|5x-3\right|\)
\(\Rightarrow3x+2=5x-3\) hoặc \(3x+2=3-5x\)
\(\Rightarrow2x=5\) hoặc \(8x=1\)
\(\Rightarrow x=\frac{5}{2}\) hoặc \(x=\frac{1}{8}\)