\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009}\)
\(=>\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009}\)
\(=>\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{2009}\)
\(=>1-\frac{1}{x+1}=\frac{2008}{2009}=>\frac{1}{x+1}=1-\frac{2008}{2009}=\frac{1}{2009}\)
=>x+1=2009
=>x=2008
Vậy x=2008
1/2+1/6+1/12+...+1/x*(x+1)=2008/2009
1/1*2+1/2*3+1/3*4+...+1/x*(x+1)=2008/2009
1-1/2+1/2-1/3+1/3-1/4+...+1/x-1/(x+1)=2008/2009
1-1/x+1)=2008/2009
1/x+1=1-2008/2009
1/x+1=1/2009
nên x+1=2009
x=2009-1
x=2008 (tick nha)