Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngo Anh Ngoc
Xem chi tiết
Đinh Tuấn Việt
23 tháng 9 2015 lúc 21:47

a) Không

b) Có 

Phạm Thị Tâm Tâm
23 tháng 9 2015 lúc 21:52

a) chắc là có thể

b) đương nhiên rồi

ĐẶNG KỲ NAM
22 tháng 9 2022 lúc 20:08

a) Có : VD: căn 3 . căn 3 = 3 là số hữu tỉ
b) Có: VD: 5- căn 2 + căn 2 = 5 là số hữu tỉ

Im Yoona
Xem chi tiết
Im Yoona
9 tháng 8 2017 lúc 20:01

ai trả lời nhanh mình k cho mình cần luôn

Nguyễn Hải Nam
Xem chi tiết
Trà My
27 tháng 2 2017 lúc 15:44

sao dài thế @@ chộp bài nào làm bài nấy ha

Câu 1:

Giả sử \(\sqrt{7}\) là số hữu tỉ thì \(\sqrt{7}=\frac{a}{b}\) với \(\frac{a}{b}\) là phân số tối giản, a;b thuộc Z, b khác 0

\(\frac{a}{b}=\sqrt{7}\Rightarrow\left(\frac{a}{b}\right)^2=7\Rightarrow\frac{a^2}{b^2}=7\Rightarrow a^2=7b^2\)=> a2 chia hết cho 7 (1)

=> a chia hết cho 7 => a=7k với k thuộc Z

Thay a=7k vào a2=7b2 ta được 49k2=7b2 => 7k2=b2 => b2 chia hết cho 7 => b chia hết cho 7 (2)

Từ (1) và (2) => phân số a/b chưa tối giản trái với giả thiết ban đầu

=>\(\sqrt{7}\) là số vô tỉ (đpcm)

Trà My
27 tháng 2 2017 lúc 15:51

Ta có: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2acbd+b^2d^2+a^2d^2-2adbc+b^2c^2\)

\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\) (1)

Mặt khác: \(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2\) (2)

Từ (1) và (2) => đpcm

Trà My
27 tháng 2 2017 lúc 16:05

\(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)

\(\Leftrightarrow a^2c^2+b^2c^2+a^2d^2+b^2d^2\ge a^2c^2+2abcd+b^2d^2\)

\(\Leftrightarrow a^2c^2+b^2c^2+a^2d^2+b^2d^2-a^2c^2-2abcd-b^2d^2\ge0\)

\(\Leftrightarrow a^2d^2-2abcd+b^2c^2\ge0\Leftrightarrow\left(ad-bd\right)^2\ge0\) luôn đúng!

Sizuka
Xem chi tiết
Ngu Ngu Ngu
11 tháng 4 2017 lúc 10:18

Câu 1: 

Giả sử \(\sqrt{7}\) là số hữu tỉ \(\Rightarrow\sqrt{7}=\frac{m}{n}\) (tối giản)

\(\Rightarrow7=\left(\frac{m}{n}\right)^2=\frac{m^2}{n^2}\) Hay \(7n^2=m^2\left(1\right)\)

Đẳng thức này chứng tỏ \(m^2⋮7\) Mà \(7\) là số nguyên tố nên \(m⋮7\)

Đặt \(m=7k\left(k\in Z\right)\) ta có: \(m^2=49k^2\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra: \(7n^2=49k^2\) nên \(n^2=7k^2\left(3\right)\)

Từ \(\left(3\right)\) ta lại có: \(n^2⋮7\) và vì \(7\) là số nguyên tố nên \(n⋮7\)

\(\Rightarrow\hept{\begin{cases}m⋮7\\n⋮7\end{cases}}\) nên phân số \(\frac{m}{n}\) không tối giản, trái với giả thiết

Vậy \(\sqrt{7}\) không phải là số hữu tỉ

\(\Leftrightarrow\sqrt{7}\) là số vô tỉ (Điều phải chứng minh)

Super Saygian Gon
3 tháng 2 2017 lúc 13:40

trời ơi nhìn hoa cả mắt

NGUYEN MANH QUAN
5 tháng 2 2017 lúc 20:20

bạn nên ghi ra từng câu thì mọi người mới làm cho chứ ai rảnh

doraemon
Xem chi tiết
Lê Hoàng Minh +™( ✎﹏TΣΔ...
5 tháng 8 2021 lúc 15:24

a/ Có. Ví dụ: (3 - √3) và (2 + √3) là hai số vô tỉ dương, nhưng (3 - √3) + (2 + √3) = 5 là một số hữu tỉ.

Khách vãng lai đã xóa
Trần Vũ Mai Phương Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 6 2023 lúc 1:23

10: a được gọi là nghiệm của P(x) khi P(a)=0

7:

Có dạng là một đường thẳng đi qua gốc tọa độ

Nguyễn Ngọc Linh Hương
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 8 2021 lúc 21:13

a: Để A là số hữu tỉ dương thì \(\dfrac{x-5}{9-x}>0\)

\(\Leftrightarrow\dfrac{x-5}{x-9}< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-5>0\\x-9< 0\end{matrix}\right.\Leftrightarrow5< x< 9\)

b: Để A không là số hữu tỉ dương cũng không là số hữu tỉ âm thì x-5=0

hay x=5

c: Để A là số nguyên thì \(x-5⋮9-x\)

\(\Leftrightarrow4⋮x-9\)

\(\Leftrightarrow x-9\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(x\in\left\{10;8;11;7;13;5\right\}\)

gì cũng được
Xem chi tiết
chuche
Xem chi tiết
Nguyễn Hoàng Minh
31 tháng 10 2021 lúc 15:39

\(5,M=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\\ M=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]\\ M=1\left(1-3ab\right)=1-3ab\ge1-\dfrac{3\left(a+b\right)^2}{4}=1-\dfrac{3}{4}=\dfrac{1}{4}\\ M_{min}=\dfrac{1}{4}\Leftrightarrow a=b=\dfrac{1}{2}\)