1+\(\frac{2}{6}+\frac{2}{12}+......+\frac{2}{x.\left(x+1\right)}=1\frac{1989}{1991}\)
Tìm x
\(2+\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+......+\frac{2}{x\left(x+1\right)}=1\frac{1989}{1991}\)
\(2+\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=1\frac{1989}{1991}\)
\(2\left(1+\frac{1}{3}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=1\frac{1989}{1991}\)
\(2\left(1+\frac{1}{3}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=1\frac{1989}{1991}\)
\(2\left(1+\frac{1}{3}+\frac{1}{2}-\frac{1}{x+1}\right)=1\frac{1989}{1991}\)
\(\frac{8}{3}+2-\frac{2}{x+1}=1\frac{1989}{1991}\)
\(\frac{2}{x+1}=\frac{13}{10}\)( số thập phân dài quá nên mk lấy số tròn thôi nha )
\(x+1=2:\frac{13}{10}\)
\(x+1=\frac{20}{13}\)
\(\Leftrightarrow x=\frac{7}{13}\)
Tìm x, biết:
\(2+\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+.....+\frac{2}{x\left(x+1\right)}=1\frac{1989}{1991}\)
\(2\left(1+\frac{1}{3}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{x\left(x+1\right)}\right)=\frac{3980}{1991}\)
\(1+\frac{1}{3}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+......+\frac{x+1-x}{x\left(x+1\right)}=\frac{1990}{1991}\)
\(1+\frac{1}{3}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{x}-\frac{1}{x-1}=\frac{1990}{1991}\)
\(1+\frac{1}{3}+\frac{1}{2}-\frac{1}{x-1}=\frac{1990}{1991}\)
\(\frac{1}{x-1}=\frac{11}{6}-\frac{1990}{1991}=\frac{9961}{11946}\)
\(x-1=\frac{11946}{9961}\Rightarrow x=\frac{21907}{9961}\)
\(y=2+\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\cdot\left(x+1\right)}=1\frac{1989}{1991}\)
giúp mình với
\(2+\frac{2}{3}+\frac{2}{6}+....+\frac{2}{x\left(x+1\right)}=1\frac{1989}{1991}\)
Hình như đề sai rồi bạn ạ
Bạn xem lị đề nha
Sai đề rồi bạn ơi, 2 + ... không thể nào = 1 1989/1991 được bạn ạ !!!
đề thầy giáo ra mà
thầy dạy HSG lớp 9 đó
Giúp mình nhóe
1+\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{2}{x\left(x+1\right)}=1\frac{1989}{1991}\)
Ta có : \(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{1989}{1991}\)
=> \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{1989}{1991}\)
=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{1989}{1991}\)
=> \(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1989}{1991}\)
=> \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{1989}{3982}\)
=> \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1989}{3982}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{1989}{3982}\)
=> \(\frac{1}{x+1}=\frac{1}{1991}\)
=> x + 1 = 1991
=> x = 1990
Vậy x = 1990
\(2\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{x\left(x+1\right)}\right)=\frac{3980}{1991}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\left(x+1\right)}=\frac{1990}{1991}\)
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1990}{1991}\)
\(1-\frac{1}{x+1}=\frac{1990}{1991}\)
\(\frac{1}{x+1}=1-\frac{1990}{1991}\)
\(\frac{1}{x+1}=\frac{1}{1991}\)
\(x+1=1991\)
\(x=1990\)
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+......+\frac{2}{x\left(x+1\right)}=1\frac{1989}{1991}\)
\(\Leftrightarrow\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.......+\frac{2}{x\left(x+1\right)}=\frac{1989}{1991}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+.......+\frac{2}{x\left(x+1\right)}=\frac{1989}{1991}\)
\(\Leftrightarrow2.\left[\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+......+\frac{1}{x\left(x+1\right)}\right]=\frac{1989}{1991}\)
\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{x\left(x+1\right)}=\frac{1989}{3982}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.......+\frac{1}{x\left(x+1\right)}=\frac{1989}{3982}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{1989}{3982}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1989}{3982}\)\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{1991}\)
\(\Leftrightarrow x+1=1991\)\(\Leftrightarrow x=1990\)
Vậy \(x=1990\)
tìm x:
2+\(\frac{2}{3}\)+\(\frac{2}{6}\)+\(\frac{2}{12}\)+ .... +\(\frac{2}{x\left(x+1\right)}\)= 1\(\frac{1989}{1991}\)
\(2+\frac{2}{3}+\frac{2}{12}+.....+\frac{2}{X\left(X-1\right)}=1\frac{1989}{1991}\)
1989 PHẦN 1991 NHA MK VT THIẾU
\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+.....+\frac{2}{X\left(X+1\right)}=\frac{2}{9}\) \(X-\frac{20}{11.13}-\frac{20}{13.15}-\frac{20}{15.17}-.....-\frac{20}{53.55}=\frac{3}{11}\)
GIÚP MÌNH NHA MẤY BẠN 10H CHỐT NHA . AI TRẢ LỜI ĐÚNG VÀ NHANH MK TIK CHO
Tìm x, biết:
a. \(\left(\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{97.99}\right)-x=\frac{-100}{99}\)
b. \(2+\frac{2}{3}+\frac{2}{6}+\frac{2}{7}+.......+\frac{2}{x.\left(x+1\right)}=1\frac{1989}{1991}\)
Tính
\(2+\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x.\left(x+1\right)}=1\frac{1989}{1990}\)
\(2+\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+...+\frac{2}{2.\left(x+1\right)}=1\frac{1989}{1990}\)
ai làm nhanh trước 13:30 tui sẽ tick tất nhung phải đúng
tầm là sai ế mình làm bài này nhưng ko ra kq