lập phương trình đường tròn tiếp xúc với Ox tại A(6,0) và qua điểm B(9,9)
Lập phương trình đường tròn tiếp xúc với hai trục tọa độ Ox, Oy và đi qua điểm \(A(4;2)\)
Gọi tâm của đường tròn là điểm \(I(a;b)\)
Ta có: \(IA = \sqrt {{{\left( {a - 4} \right)}^2} + {{\left( {b - 2} \right)}^2}} ,d\left( {I,Ox} \right) = b,d\left( {I,Oy} \right) = a\)
Giải hệ phương trình \(\left\{ \begin{array}{l}d\left( {I,Ox} \right) = IA\\d\left( {I,Oy} \right) = IA\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = \sqrt {{{\left( {a - 4} \right)}^2} + {{\left( {b - 2} \right)}^2}} \\a = \sqrt {{{\left( {a - 4} \right)}^2} + {{\left( {b - 2} \right)}^2}} \end{array} \right.\)
Thay \(a = b\) vào phương trình \(a = \sqrt {{{\left( {a - 4} \right)}^2} + {{\left( {b - 2} \right)}^2}} \) ta có:
\(\begin{array}{l}a = \sqrt {{{\left( {a - 4} \right)}^2} + {{\left( {a - 2} \right)}^2}} \\ \Rightarrow {a^2} = {\left( {a - 4} \right)^2} + {\left( {a - 2} \right)^2}\\ \Rightarrow {a^2} - 12a + 20 = 0\\ \Rightarrow \left[ \begin{array}{l}a = 10\\a = 2\end{array} \right. \end{array}\)
Với \(a = b = 2\) ta có phương trình đường tròn (C) là: \({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} = 4\)
Với \(a = b = 10\) ta có phương trình đường tròn (C) là: \({\left( {x - 10} \right)^2} + {\left( {y - 10} \right)^2} = 100\)
c) Viết phương trình đường tròn (C) đi qua A(4; 2) và tiếp xúc với Oy tại B(0; 2)
d) Viết phương trình đường tròn (C) đi qua A(0; 1) và B(0; 5) và tiếp xúc với Ox
a) viết phương trình đường tròn tiếp xúc với 2 trục tọa độ và đi qua điểm (2,1) ; b) viết phương trình đường tròn đi qua 2 điểm (1,1) , (1,4) và tiếp xúc với trục Ox .
a)
Gọi đường tròn cần tìm có dạng (C): \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\)
với tâm I(a;b) bán kính R
\(d\left(I,Ox\right)=\frac{\left|b\right|}{\sqrt{0^2+1^2}}=\left|b\right|\)
\(d\left(I,Oy\right)=\frac{\left|a\right|}{\sqrt{1^2}}=\left|a\right|\)
Do (C) tiếp xúc với Ox , Oy
\(\Rightarrow\left|a\right|=\left|b\right|=R\\ \Rightarrow a=\pm b\)
Lại có : (C) đi qua điểm có tọa độ (2;1)
\(\Rightarrow\left(2-a\right)^2+\left(1-b\right)^2=b^2\left(vìb^2=R^2\right)\\ \Rightarrow a^2-4a+4+b^2-2b+1=b^2\\ \Leftrightarrow a^2-4a-2b+5=0\left(1\right)\)
TH1: a = b thay vào (1) ta được :
\(\Rightarrow a^2-4a-2a+5=0\\ \Leftrightarrow a^2-6a+5=0\\ \Leftrightarrow a=1hoặca=5\)
với a =1 \(\Rightarrow\) b =1
\(\Rightarrow\left(C\right):\left(x-1\right)^2+\left(y-1\right)^2=1\)
với \(a=5\Rightarrow b=5\\ \Rightarrow\left(C\right):\left(x-5\right)^2+\left(y-5\right)^2=25\)
TH2 : a = -b thay vào (1) ta được :
\(a^2-4a+2b+5=0\\ \Leftrightarrow a^2-2a+5=0\left(VôNgiệm\right)\)
Vậy có 2 đường tròn (C) cần tìm ở trên
b)
Gọi đường tròn cần tìm có dạng (C): \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\) với tâm I (a;b), bán kính R
Do (C) đi qua 2 điểm (1;1) , (1;4) nên ta có :
\(\begin{cases}\left(1-a\right)^2+\left(1-b\right)^2=R^2\left(1\right)\\\left(1-a\right)^2+\left(4-b\right)^2=R^2\end{cases}\)
\(\Rightarrow\left(1-b\right)^2=\left(4-b\right)^2\\ \Rightarrow b=\frac{5}{2}\)
Lại có : (C) tiếp xúc với Ox
\(d\left(I,Ox\right)=\left|b\right|=R\\ \Rightarrow R=\frac{5}{2}\)
Thay \(b=R=\frac{5}{2}\) vào (1)ta được :
\(\left(1-a\right)^2+\left(1-\frac{5}{2}\right)^2=\frac{25}{4}\\ \Leftrightarrow a^2-2a-3=0\\ \Leftrightarrow a=-1hoặca=3\)
với \(\begin{cases}a=-1\\b=R=\frac{5}{2}\end{cases}\) \(\Rightarrow\left(C\right):\left(x+1\right)^2+\left(y-\frac{5}{2}\right)^2=\frac{25}{4}\)
với \(\begin{cases}a=3\\b=R=\frac{5}{2}\end{cases}\) \(\Rightarrow\left(C\right):\left(x-3\right)^2+\left(y-\frac{5}{2}\right)^2=\frac{25}{4}\)
a) viết phương trình đường tròn tiếp xúc với 2 trục tọa độ và đi qua điểm (2,1) ; b) viết phương trình đường tròn đi qua 2 điểm (1,1) , (1,4) và tiếp xúc với trục Ox .
a) viết phương trình đường tròn tiếp xúc với 2 trục tọa độ và đi qua điểm (2,1) ; b) viết phương trình đường tròn đi qua 2 điểm (1,1) , (1,4) và tiếp xúc với trục Ox .
a) viết phương trình đường tròn tiếp xúc với 2 trục tọa độ và đi qua điểm (2,1) ; b) viết phương trình đường tròn đi qua 2 điểm (1,1) , (1,4) và tiếp xúc với trục Ox .
a) viết phương trình đường tròn tiếp xúc với 2 trục tọa độ và đi qua điểm (2,1) ; b) viết phương trình đường tròn đi qua 2 điểm (1,1) , (1,4) và tiếp xúc với trục Ox .
a) viết phương trình đường tròn tiếp xúc với 2 trục tọa độ và đi qua điểm (2,1) ; b) viết phương trình đường tròn đi qua 2 điểm (1,1) , (1,4) và tiếp xúc với trục Ox .
Gọi I(a,b) là tâm của đường tròn
vì đường tròn tiếp xúc với 2 trục tọa độ nên tâm I nằm trên 1 trong các tia phân giác của các trục, nói cách khác là I cách đều hai trục tọa độ => |a| = |b|
nhận xét: đường tròn tiếp xúc với 2 trục tọa độ nên cả hình tròn nằm trong 1 trong 4 góc của hệ trục, lại có A(2, -1) thuộc phần tư thứ IV => tâm I thuộc phần tư thứ IV => a > 0, b < 0
như vậy tọa độ tâm là I(a, -a), bán kính R = a, với a > 0
ptrình đường tròn: (x-a)² + (y+a)² = a²
A(2, -1) thuộc đtròn <=> (2-a)² + (-1+a)² = a² <=> a² - 6a + 5 = 0 <=> a = 1 hoặc a = 5
Vậy có 2 đường tròn thỏa yêu cầu là: (x-1)² + (y+1)² = 1 hoặc (x-5)² + (y-5)² = 25
bn ơi , điểm có tọa độ là (2,1) mà bn , nhầm rùi kìa
Bạn ơi,tại bạn này chép lời giải trên mạng nên chưa kịp sửa.
a) viết phương trình đường tròn tiếp xúc với 2 trục tọa độ và đi qua điểm (2,1) ; b) viết phương trình đường tròn đi qua 2 điểm (1,1) , (1,4) và tiếp xúc với trục Ox .