a)
Gọi đường tròn cần tìm có dạng (C): \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\)
với tâm I(a;b) bán kính R
\(d\left(I,Ox\right)=\frac{\left|b\right|}{\sqrt{0^2+1^2}}=\left|b\right|\)
\(d\left(I,Oy\right)=\frac{\left|a\right|}{\sqrt{1^2}}=\left|a\right|\)
Do (C) tiếp xúc với Ox , Oy
\(\Rightarrow\left|a\right|=\left|b\right|=R\\ \Rightarrow a=\pm b\)
Lại có : (C) đi qua điểm có tọa độ (2;1)
\(\Rightarrow\left(2-a\right)^2+\left(1-b\right)^2=b^2\left(vìb^2=R^2\right)\\ \Rightarrow a^2-4a+4+b^2-2b+1=b^2\\ \Leftrightarrow a^2-4a-2b+5=0\left(1\right)\)
TH1: a = b thay vào (1) ta được :
\(\Rightarrow a^2-4a-2a+5=0\\ \Leftrightarrow a^2-6a+5=0\\ \Leftrightarrow a=1hoặca=5\)
với a =1 \(\Rightarrow\) b =1
\(\Rightarrow\left(C\right):\left(x-1\right)^2+\left(y-1\right)^2=1\)
với \(a=5\Rightarrow b=5\\ \Rightarrow\left(C\right):\left(x-5\right)^2+\left(y-5\right)^2=25\)
TH2 : a = -b thay vào (1) ta được :
\(a^2-4a+2b+5=0\\ \Leftrightarrow a^2-2a+5=0\left(VôNgiệm\right)\)
Vậy có 2 đường tròn (C) cần tìm ở trên
b)
Gọi đường tròn cần tìm có dạng (C): \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\) với tâm I (a;b), bán kính R
Do (C) đi qua 2 điểm (1;1) , (1;4) nên ta có :
\(\begin{cases}\left(1-a\right)^2+\left(1-b\right)^2=R^2\left(1\right)\\\left(1-a\right)^2+\left(4-b\right)^2=R^2\end{cases}\)
\(\Rightarrow\left(1-b\right)^2=\left(4-b\right)^2\\ \Rightarrow b=\frac{5}{2}\)
Lại có : (C) tiếp xúc với Ox
\(d\left(I,Ox\right)=\left|b\right|=R\\ \Rightarrow R=\frac{5}{2}\)
Thay \(b=R=\frac{5}{2}\) vào (1)ta được :
\(\left(1-a\right)^2+\left(1-\frac{5}{2}\right)^2=\frac{25}{4}\\ \Leftrightarrow a^2-2a-3=0\\ \Leftrightarrow a=-1hoặca=3\)
với \(\begin{cases}a=-1\\b=R=\frac{5}{2}\end{cases}\) \(\Rightarrow\left(C\right):\left(x+1\right)^2+\left(y-\frac{5}{2}\right)^2=\frac{25}{4}\)
với \(\begin{cases}a=3\\b=R=\frac{5}{2}\end{cases}\) \(\Rightarrow\left(C\right):\left(x-3\right)^2+\left(y-\frac{5}{2}\right)^2=\frac{25}{4}\)