Chứng minh: A=2018^2+2018^2×2019^2+2019^2 là số chính phương.
cho P=1*2*3+2*3*4+...+2018*2019*2020 chứng minh rằng 4P+1 là số chính phương
chứng minh
A = 2019 + 2019 x 2018
B = 201620172018
A là số chính phương, B ko phải là số chính phương
Bài:
a. Phân tích đa thức sau thành nhân tử: 4x^2-12x+23xy-35y^2+15y.
b/ Cho A=2018^2+2019^2+2018^2.2019^2, hãy chứng tỏ A là số chính phương.
c/ Chứng minh rằng: a^2+b^2+c^2.=a(b+c+d)-d^2 với số thực a,b,c,d.
b)Ta có:\(A=2018^2+2019^2+2019^2.2018^2\)
\(=\left(2018^2-2.2018.2019+2019^2\right)+2.2018.2019+\left(2018.2019\right)^2\)
\(=\left(2019.2018\right)^2+2.2018.2019+1^2=\left(2019.2018+1\right)^2\)là số chính phương (đpcm)
c)Ta có:Xét hiệu a^2+b^2+c^2+d^2-a(b+c+d),ta có:
\(a^2+b^2+c^2+d^2-a\left(b+c+d\right)=a^2+b^2+c^2+d^2-ab-ac-ad\)
\(=\left(\frac{1}{4}a^2-ab+b^2\right)+\left(\frac{1}{4}a^2-ac+c^2\right)+\left(\frac{1}{4}a^2-ad+d^2\right)+\frac{a^2}{4}\)
\(=\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}\right)^2\ge0\forall a,b,c,d\left(đpcm\right)\)
\(\Rightarrow a^2+b^2+c^2\ge a\left(b+c+d\right)-d^2\)
Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}b=c=d=\frac{a}{2}\\\frac{a}{2}=0\end{cases}\Leftrightarrow}a=b=c=d=0\)
a) 4x2 - 12x + 23xy - 35y2 + 15y
= 4x2 + 23xy - 35y2 - (12x - 15y)
= 4x2 - 5xy + 28xy - 35y2 - 3(4x - 5y)
= x(4x - 5y) + 7y(4x - 5y) - 3(4x - 5y)
= (4x - 5y)(x + 7y - 3)
Chứng minh (12 + 22) (22 + 32)...(20182 + 20192) là tổng 2 số chính phương
Chứng minh rằng : \(2019/ \sqrt[2]{2018} + 2018/\sqrt[2]{2019} > \sqrt[2]{2018} + \sqrt[2]{2019}\)
\(\frac{2019}{\sqrt{2018}}+\frac{2018}{\sqrt{2019}}\ge\frac{\left(\sqrt{2019}+\sqrt{2018}\right)^2}{\sqrt{2018}+\sqrt{2019}}=\sqrt{2018}+\sqrt{2019}\)
Dấu "=" ko xảy ra nên \(\frac{2019}{\sqrt{2018}}+\frac{2018}{\sqrt{2019}}>\sqrt{2018}+\sqrt{2019}\)
Chứng minh rằng : \(\sqrt{1+2018^2+\frac{2018^2}{2019^2}}\) +\(\frac{2018}{2019}\)có giá trị là số tự nhiên
Căn bậc 2 của 1 là 1,của 2018 bình phương là 2018,2018 bình phương/2019 bình phương là 2018/2019 nên cái căn đó có giá trị là 1+2018+2018/2019 nha.bn lấy 2018/2019+2018/2019 nếu là số tự nhiên thì biểu thức này là STN
\(\sqrt{1+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)
\(=\)\(\sqrt{\left(1+2.2018+2018^2\right)-2.2018+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)
\(=\)\(\sqrt{2019^2-2.2018+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)
\(=\)\(\sqrt{\left(2019-\frac{2018}{2019}\right)^2}+\frac{2018}{2019}\)
\(=\)\(\left|2019-\frac{2018}{2019}\right|+\frac{2018}{2019}=2019-\frac{2018}{2019}+\frac{2018}{2019}=2019\)
\(\Rightarrow\)\(\sqrt{1+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\) là số tự nhiên ( đpcm )
...
:v nãy giải xong thì bị lỗi please signing gì đó...(giải rất kĩ càng,lần này ko giải kĩ nx -_-)
Đặt a = 2018 -> 2019 = a + 1..
Gọi biểu thức trên là A.Quy đồng biểu thức trong căn và rút gọn,ta được:
\(A=\sqrt{\frac{a^4+2a^3+3a^2+2a+1}{\left(a+1\right)^2}}+\frac{a}{a+1}\)
Đặt \(B=a^4+2a^3+3a^2+2a+1\)
\(=a^2\left(a^2+2a+3+\frac{2}{a}+\frac{1}{a^2}\right)\)
\(=a^2\left[\left(a+\frac{1}{a}\right)^2+2\left(a+\frac{1}{a}\right)+1\right]\)
\(=\left[a\left(a+\frac{1}{a}+1\right)\right]^2\) (Làm tắt xíu nhé)
Suy ra \(A=\frac{\left(a+\frac{1}{a}+1\right)a}{\left(a+1\right)}+\frac{a}{a+1}=\frac{a^2+2a+1}{a+1}=\frac{\left(a+1\right)^2}{a+1}=a+1=2019\)
Là số tự nhiên.(đpcm)
Chứng minh rằng :
a) 2x + 2y / x + y = 2 ( x + y khác 0 )
b) 2018 / 2019 = 2018 . 2018 . 2018 / 2019 . 2019 . 2019
giúp mk nha mn . ai nhanh mk tick !!!
a, 2x+2y/x+y=2
=> 2(x+y)/x+y=2
=>2/1=2
=> đpcm
Câu b thì mình nghĩ nó không thể bằng được đâu bạn
chứng minh
A= 2019 + 2019 x 2018
B= 201620172018
A là số chính phương, B ko phải là số chính phương
Mn giúp mk nhé, thanks
Not bơ, bơ nhạt lắm
Cho A=1-2018+2018^2-2018^3+...-2018^2017+2018^2018. Chứng minh 2019.A-1 là 1 lũy thừa của 2018
2018 A = 2018 - 2018^2 + 2018^3 +...- 2018^2018 + 2018^2019
=> A + 2018 A = 1 +2018^2019
=> 2019 A = 1 + 2018^2019
=> 2019 A - 1 = 2018^2019
=> 2019 A -1 là 1 lũy thừa của 2018