Cho ∆ABC có AC = 12cm,BC = 15cm, AB = 9cm.D là trung điểm của AC.Tính độ dài BD
Bài 8:
Cho tam giác ABC có AB= 9cm, BC= 15cm, AC=12cm. D là điểm trên cạnh AC sao cho AD= 2cm. Tính độ dài đoạn thẳng BD. ( cần hình )
Xét ΔABC có BC^2=AB^2+AC^2
nen ΔABC vuông tại A
\(BD=\sqrt{2^2+9^2}=\sqrt{85}\left(cm\right)\)
Cho Tam Giác ABC có AB=9cm,BC=12cm,AC=15cm
a)Chứng Minh Tam Giác ABC là tam giác vuông
b)Trên Tia AB lấy điểm D sao cho B là trung điểm của AD.Tính độ dài đoạn CD?
a) Do 92+122=152 nên là tam giác vuông( định lý pytago)
b) Do B là trung điểm của đoạn AD nên AB và BD đối nhau. Suy ra AD vuông góc AC.
Lại thấy: B là trung điểm AD(gt) nên AD=2AB=18(cm)
Xét tan giác vuông ACD(cmt). Áp dụng định lí Pytago có:
AD2+AC2=DC2
<=>182+152=DC2
<=>324+225=DC2
<=>DC2=549(cm)
<=>DC=\(3\sqrt{61}\left(cm\right)\)
Vậy...
Cho tam giác ABC có AB=12cm , AC=15cm, BC=q6cm. Trên cạnh AB lấy điểm M sao cho AM=3cm. Từ M kẻ đường thẳng song song với BC cắt AC tại N, cắt trung tuyến AI tại K.
a/ Tính độ dài MN
b/ Chứng minh K là trung điểm của MN
c/ Trên tia MN lấy điểm P sao cho MP=8cm. Nối PI cắt AC tại Q. Chững minh tam giác QIC đồng dạng với tam giác AMN
Bài 3. Cho tam giác
ABC
. Trên cạnh
AC
lấy điểm
N
sao cho
2
5
CN
AN
. Trên cạnh BC lấy điểm
M
sao cho
BC xMC
và MN // AB.
Tìm x.
A. 5 B. 2,5 C. 3,5 D. 1,4
Bài 1 : Cho tam giác ABC vuông tại A có AB < AC . Tia phân giác của ABC) của cạnh AC tại D kẻ DE .!. BC ( E € BC ) a, Tính độ dài AB nếu cho AC = 12cm ; BC = 15cm b, chứng minh ∆ ADB = ∆EDB , từ đó suy ra DB là tia phân giác của ADE) c, Vẽ EF // BD ( F thuộc DC ) . Chứng minh BDE) = MED và tam giác DEF cân d, chứng minh BD là đường trung trực của AE
a)Xét \(\Delta ABC\) vuông tại A có :
\(BC^2=AB^2+AC^2\) (định lý pytago)
\(225=AB^2+144\)
\(\Rightarrow AB^2=225-144\)
\(AB^2=81\)
AB = 9cm
b)Xét \(\Delta ABD\) vuông tại A và \(\Delta EBD\) vuông tại E có :
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
=>\(\Delta ABD\) =\(\Delta EBD\) (ch-gn)
=>\(\widehat{ADB}=\widehat{EDB}\)
=> DB là tia phân giác của \(\widehat{ADE}\)
c)M mình ko biết ở đâu nên mình ko làm nhé
Vì EF // BD nên \(\widehat{CFE}=\widehat{CDB}\)
Có : \(\widehat{CFE}+\widehat{EFD}=180^o\)
\(\widehat{CDB}+\widehat{BDA}=180^o\)
mà \(\widehat{CFE}=\widehat{CDB}\)
=> \(\widehat{EFD}=\widehat{BDA}\)
mà \(\widehat{BDA}=\widehat{BDE}=\widehat{DEF}\)
=> \(\widehat{EFD}=\widehat{DEF}\) => \(\Delta DEF\) cân tại D
d) Có : \(AB=BE\) (\(\Delta ABD\) =\(\Delta EBD\))
=> \(\Delta ABE\) cân tại B
mà BD là đường phân giác của góc B
=> BD là đường trung trực của AE
Cho tam giác ABC có: AB = 12cm, BC = 15cm, AC = 18cm. Gọi I là giao điểm của các đường phân giác và G là trọng tâm tam giác. Độ dài IG là:
A. 1 cm
B. 2 cm
C. 1,5 cm
D. 2,5 cm
Do M là trung điểm BC nên MB = 1 2 BC = 1 2 .15 = 7,5 cm
Mà BD = 6cm nên DM = 7,5 cm – 6cm = 1,5 cm
Do IG // DM nên I G D M = A G A M = 2 3 => IG = 2 3 DM = 1 3 .1,5 = 1 cm
Đáp án: A
cho tam giac ABC vuong tai A,M là trung điểm của BC.,biêt AB=6cm,AC=8cm
a.tính độ dài các đoạn thẳng BC,AM
b.gọi E,F lần lược là trung điểm của AB,AC.Tính độ dài EF
Bài 4: Cho Tam Giác ABC Có Đường Cao AH (H Thuộc BC) Và Độ Dài Ba Cạnh Lần Lượt Là AB=15CM, BC=25CM Và AC=20CM
Bài 5: Cho Hình Thang ABCD Có Đường Cao BH=12CM (H Thuộc DC) Và BD=15CM. Hai Đường Chéo AC Và BD Vuông Góc Với Nhau. Qua B Vẽ Đường Thẳng Song Song Với AC, Cắt DC Ở E.
1) Chứng Minh Rằng Tam Giac BDE Là Tam Giac Vuông
2) Tính Độ Dài Của Các Đoạn Thẳng DH Và De
3) Tính Diện Tích Của Hình Thang ABCD
5:
1: BE//AC
AC vuông góc BD
=>BE vuông góc BD
=>ΔBED vuông tại B
2:
DH=căn BD^2-BH^2=9cm
ΔBED vuông tại B có BH là đường cao
nên BD^2=DH*DE
=>DE=15^2/9=25cm
BE=căn 25^2-15^2=20(cm)
Cho tam giác ABC , góc B = 60 độ , AB = 7cm , BC = 15cm . Tren BC lấy D sao cho góc BAD = 60 độ . Gọi H là trung điểm của BD
a) tính độ dài HD
b)tính độ dài AC
Xét tam giác ADB có góc ABD = BAD = 60 độ => tam giác ABD đều => AB = BD = 7 cm
Tam giác ABD có AH nên trung tuyến nên đòng thời là đường cao
Áp dụng địa lý Pi - ta - go trong tam giác vuông ABH có AH = AB - BH = 7 - 3,5 = 36,75
HC = BC - BH = 15 - 3,5 = 11,5
Tam giác AHC có AC = AH + HC = 36,75 + 11 ,5 = 169
cho tam giác ABC vuông tại A , có AB=9cm, BC=15cm, AC =12cm a) so sánh các góc của tam giác ABC b) trên tia đối AB lấy điểm D sao cho A là trung điểm của đoạn thẳng BD . Chứng minh tam giác ABC=tam giác ADC từ đó suy ra tam giác BCD cânc) E là trung điểm của cạnh CD, BE cắt AC ở I .chứng minh DI đi qua trung
a: AB<AC<BC
=>góc C<góc B<góc A
b: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
=>ΔABC=ΔADC
=>CB=CD
=>ΔCBD cân tại C