giải bpt :
<5x+1>/<x+3>-<3x-2>/<x-1> lớn hơn 2
giải bpt và biểu diễn tập nghiệm
a, 2x-4<5
b, 4-3x lớn hơn hoặc bằng 6
c, 3x-7<5x-2
a) \(2x-4< 5\)
\(\Leftrightarrow\) \(2x< 4+5\)
\(\Leftrightarrow\) \(x< 4,5\)
b) \(4-3x\ge6\)
\(\Leftrightarrow\) \(-3x\ge-4+6\)
\(\Leftrightarrow-3x\ge2\)
\(\Leftrightarrow\) \(x\le-0,6\)
c) \(3x-7< 5x-2\)
\(\Leftrightarrow\) \(3x-5x< 7-2\)
\(\Leftrightarrow\) \(-2,5x< 5\)
\(\Leftrightarrow x>-2,5\)
Giải bpt:
a) (x+3)^2 + 3(x-1) lớn hơn hoặc bằng x^2-4
a, Ta có\(\left(x+3\right)^2+3\left(x-1\right)\ge x^2-4\)
\(\Leftrightarrow x^2+6x+9+3x-3\ge x^2-4\)
\(\Leftrightarrow x^2+9x+6\ge x^2-4\)
\(\Leftrightarrow9x+10\ge0\Leftrightarrow x\ge-\frac{10}{9}\)
\(\left(x+3\right)^2+3\left(x-1\right)\ge x^2-4\)
\(\Leftrightarrow x^2+6x+9+3x-3\ge x^2-4\)
\(\Leftrightarrow x^2+6x+3x-x^2\ge-4-9+3\)
\(\Leftrightarrow9x\ge-10\)
\(\Leftrightarrow x\ge-\frac{10}{9}\)
Giải BPT :
a. (x-1)(2x-3) lớn hơn hoặc bằng 0
b. x-7/10-x lớn hơn hoặc bằng 0
đề = x-1>=0 \(\rightarrow\)x>=1
2x-3>=0\(\rightarrow\)x>=1,5
so sánh điều kiện S=(1;1,5)
ta thay đấu() = đấu ngoặc nhọn
Giải pt và bpt:
a) x-2/18 - 2x+5/12 lớn hơn x+6/9 - x-3/6
b) (2x-3)(2x+3) nhỏ hơn hoặc bằng 0
c) (3-2x)(4x+8) lớn hơn hoặc bằng 0
\(\frac{x-2}{18}-\frac{2x+5}{12}>\frac{x+6}{9}-\frac{x-3}{6}\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{36}-\frac{3\left(2x+5\right)}{36}>\frac{4\left(x+6\right)}{36}-\frac{6\left(x-3\right)}{36}\)
\(\Leftrightarrow2x-4-6x-15>4x+24-6x+18\)
\(\Leftrightarrow2x-6x-4x+6x>24+18+4+15\)
\(\Leftrightarrow-2x>61\)
\(\Leftrightarrow x< -\frac{61}{2}\)
Vậy nghiệm của bất phương trình là \(x< -\frac{61}{2}\)
Bài b và c làm cách mình thì dễ hiểu hơn nhiều :3
\(\left(2x-2\right)\left(2x+3\right)\le0\)
TH1 : \(\hept{\begin{cases}2x-3\le0\\2x+3\ge0\end{cases}< =>\hept{\begin{cases}2x\le3\\2x\ge-3\end{cases}}}\)
\(< =>\hept{\begin{cases}x\le\frac{3}{2}\\x\ge-\frac{3}{2}\end{cases}}\)
TH2 : \(\hept{\begin{cases}2x-3\ge0\\2x+3\le0\end{cases}< =>\hept{\begin{cases}2x\ge3\\2x\le-3\end{cases}}}\)
\(< =>\hept{\begin{cases}x\ge\frac{3}{2}\\x\le-\frac{3}{2}\end{cases}}\)
Vậy ...
\(\left(3-2x\right)\left(4x+8\right)\ge0\)
TH1 : \(\hept{\begin{cases}3-2x\ge0\\4x+8\ge0\end{cases}}\)
\(< =>\hept{\begin{cases}3\ge2x\\4x\ge-8\end{cases}< =>\hept{\begin{cases}\frac{3}{2}\ge x\\x\ge-\frac{8}{4}=-2\end{cases}}}\)
TH2 : \(\hept{\begin{cases}3-2x\le0\\4x+8\le0\end{cases}}\)
\(< =>\hept{\begin{cases}3\le2x\\4x\le-8\end{cases}}< =>\hept{\begin{cases}x\ge\frac{3}{2}\\x\ge-2\end{cases}}\)
Vậy ...
Giải bpt
a.(x^2+1)(4x-2)≫0(lớn hơn hoặc bằng0)
b.(x-2)x^2>0
Giúp mk vs ạ
a. Ta có \(\left(x^2+1\right)\left(4x-2\right)\ge0\)
Mà \(x^2+1\ge0+1>0\)
\(\Leftrightarrow4x-2\ge0\Leftrightarrow x\ge\frac{1}{2}\)
b.Ta có: \(\left(x-2\right)x^2>0\)
mà \(x^2\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x^2\ne0\\x-2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x>2\end{cases}\Leftrightarrow}x>2}\)
giải pt và BPT
câu a (x + 3 ) * 2 - (x + 5 ) = x^2 - 3
câu b (x -3) /4 + 1/2 lớn hơn hoặc bằng (2*x -1) /3
Bpt thứ nhất là x2+ 4x +3 >= 0
Bpt thứ 2 là 2x2 - 5x +3 > 0
(Lưu ý : kí hiểu >= là lớn hơn hoặc bằng
Bpt thứ 1 và 2 gộp lại làm hệ bất phương trình )Ko co ki hiểu nối hệ phuong trinh nên em mới làm như vay ad thong cammình làm cho bạn 3 lần mà lúc gửi thì bị mất mạng
1. Cho m<n, hãy so sánh -7m+10 với 7n+10
2. Giải BPT và biểu diễn tập ngiệm trên trục số
a) -4x+8≥0
b) 5+2x<0
3. Tìm x sao cho
a) Giá trị của biểu thức 3x+2 lớn hơn giá trị của biểu thức 2(1-2x)
b) Giá trị của biểu thức x-3 không lớn hơn giá trị của biểu thức \(\frac{6-2x}{5}\)
4. Giải BPT: |-3x|= x+6
(Mk nghĩ bài 1 là 7m + 10 với 7n + 10, hoặc ngược lại, mk sẽ làm 2 TH)
1, TH1: Ta có: m < n
\(\Leftrightarrow\) 7m < 7n (nhân 2 vế của BĐT với 7)
\(\Leftrightarrow\) 7m + 10 < 7m + 10 (cộng 2 vế của BĐT với 10)
TH2: Ta có m < n
\(\Leftrightarrow\) -7m > -7n (nhân 2 vế của BĐT với -7)
\(\Leftrightarrow\) -7m + 10 > -7n + 10 (cộng 2 vế của BĐT với 10)
2, Biểu diễn bn tự làm nhé!
a, -4x + 8 \(\ge\) 0
\(\Leftrightarrow\) -4x \(\ge\) -8 (Cộng cả 2 vế của BĐT với -8)
\(\Leftrightarrow\) x \(\le\) 2 (Chia 2 vế của BĐT với -4)
b, 5 + 2x < 0
\(\Leftrightarrow\) 2x < -5 (cộng cả hai vế của BĐT với -5)
\(\Leftrightarrow\) x < \(\frac{-5}{2}\) (Chia cả hai vế của BĐT với 2)
3,
a, Ta có: 3x + 2 > 2(1 - 2x)
\(\Leftrightarrow\) 3x + 2 > 2 - 4x
\(\Leftrightarrow\) 3x > -4x (cộng cả vế cùa BĐT với -2)
\(\Leftrightarrow\) Vì 3 > -4 mà 3x > -4x
\(\Rightarrow\) x > 0 (Vì BĐT cùng chiều khi nhân x)
Vậy x > 0
b, Ta có: x - 3 < \(\frac{6-2x}{5}\)
\(\Leftrightarrow\) x - 3 < \(\frac{2\left(3-x\right)}{4}\)
\(\Leftrightarrow\) 4(x - 3) < 2(3 - x) (Nhân cả vế của BĐT với 4)
\(\Leftrightarrow\) 4(x - 3) < -2(x - 3)
Vì 4 > -2 mà 4(x - 3) < -2(x - 3)
\(\Rightarrow\) x - 3 < 0 (vì BĐT ngược chiều)
\(\Leftrightarrow\) x < 3 (Cộng cả hai vế của BĐT với 3)
Vậy x < 3
4, |-3x| = x + 6
\(\Leftrightarrow\left[{}\begin{matrix}-3x=x+6\Leftrightarrow-4x=6\Leftrightarrow x=\frac{-3}{2}\\-3x=-x-6\Leftrightarrow-2x=-6\Leftrightarrow x=3\end{matrix}\right.\)
Vậy S = {\(\frac{-3}{2}\); 3}
Chúc bn học tốt!!
1. Cho m<n, hãy so sánh -7m+10 với 7n+10
2. Giải BPT và biểu diễn tập ngiệm trên trục số
a) -4x+8≥0
b) 5+2x<0
3. Tìm x sao cho
a) Giá trị của biểu thức 3x+2 lớn hơn giá trị của biểu thức 2(1-2x)
b) Giá trị của biểu thức x-3 không lớn hơn giá trị của biểu thức \(\frac{6-2x}{5}\)
4. Giải BPT: |-3x|= x+6
(Mk nghĩ bài 1 là 7m + 10 với 7n + 10, hoặc ngược lại, mk sẽ làm 2 TH)
1, TH1: Ta có: m < n
\(\Leftrightarrow\) 7m < 7n (nhân 2 vế của BĐT với 7)
\(\Leftrightarrow\) 7m + 10 < 7m + 10 (cộng 2 vế của BĐT với 10)
TH2: Ta có m < n
\(\Leftrightarrow\) -7m > -7n (nhân 2 vế của BĐT với -7)
\(\Leftrightarrow\) -7m + 10 > -7n + 10 (cộng 2 vế của BĐT với 10)
2, Biểu diễn bn tự làm nhé!
a, -4x + 8 \(\ge\) 0
\(\Leftrightarrow\) -4x \(\ge\) -8 (Cộng cả 2 vế của BĐT với -8)
\(\Leftrightarrow\) x \(\le\) 2 (Chia 2 vế của BĐT với -4)
b, 5 + 2x < 0
\(\Leftrightarrow\) 2x < -5 (cộng cả hai vế của BĐT với -5)
\(\Leftrightarrow\) x < \(\frac{-5}{2}\) (Chia cả hai vế của BĐT với 2)
3,
a, Ta có: 3x + 2 > 2(1 - 2x)
\(\Leftrightarrow\) 3x + 2 > 2 - 4x
\(\Leftrightarrow\) 3x > -4x (cộng cả vế cùa BĐT với -2)
\(\Leftrightarrow\) Vì 3 > -4 mà 3x > -4x
\(\Rightarrow\) x > 0 (Vì BĐT cùng chiều khi nhân x)
Vậy x > 0
b, Ta có: x - 3 < \(\frac{6-2x}{5}\)
\(\Leftrightarrow\) x - 3 < \(\frac{2\left(3-x\right)}{4}\)
\(\Leftrightarrow\) 4(x - 3) < 2(3 - x) (Nhân cả vế của BĐT với 4)
\(\Leftrightarrow\) 4(x - 3) < -2(x - 3)
Vì 4 > -2 mà 4(x - 3) < -2(x - 3)
\(\Rightarrow\) x - 3 < 0 (vì BĐT ngược chiều)
\(\Leftrightarrow\) x < 3 (Cộng cả hai vế của BĐT với 3)
Vậy x < 3
4, |-3x| = x + 6
\(\Leftrightarrow\left[{}\begin{matrix}-3x=x+6\Leftrightarrow-4x=6\Leftrightarrow x=\frac{-3}{2}\\-3x=-x-6\Leftrightarrow-2x=-6\Leftrightarrow x=3\end{matrix}\right.\)
Vậy S = {\(\frac{-3}{2}\); 3}
Chúc bn học tốt!!