Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà Linh Nguyễn
Xem chi tiết
Chu Diệu Linh
15 tháng 12 2021 lúc 14:48

Sao dài quá z?

Diễm My
Xem chi tiết
Akai Haruma
12 tháng 8 2023 lúc 23:44

Lời giải:

a. Với $n$ nguyên khác -3, để $B$ nguyên thì:

$2n+9\vdots n+3$

$\Rightarrow 2(n+3)+3\vdots n+3$

$\Rightarrow 3\vdots n+3$

$\Rightarrow n+3\in\left\{\pm 1; \pm 3\right\}$

$\Rightarrow n\in\left\{-2; -4; 0; -6\right\}$

b. 

$B=\frac{2n+9}{n+3}=\frac{2(n+3)+3}{n+3}=2+\frac{3}{n+3}$

Để $B_{\max}$ thì $\frac{3}{n+3}$ max

Điều này đạt được khi $n+3$ là số nguyên dương nhỏ nhất

Tức là $n+3=1$

$\Leftrightarrow n=-2$

c. Để $B$ min thì $\frac{3}{n+3}$ min

Điều này đạt được khi $n+3$ là số nguyên âm lớn nhất 

Tức là $n+3=-1$

$\Leftrightarrow n=-4$

Dương Tuệ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2021 lúc 22:33

Ta có: MN là đường trung bình

nên MN//CD

mà CD\(\perp\)AH

nên AH\(\perp\)MN

Dương Tuệ Linh
Xem chi tiết
Nguyễn Thị Trúc Chi
11 tháng 10 2021 lúc 17:55

Ta có:MN là đường trung bình của ΔACD

⇒MN//CD

mà AH⊥CD(đường cao AH)

⇒AH⊥MN

Hà Linh Nguyễn
Xem chi tiết
Phương Nguyễnnn
Xem chi tiết
Phương Linh Trần
Xem chi tiết
Phương Linh Trần
26 tháng 2 2021 lúc 16:28

các bạn ơi mình đg cần rất gấp mong các bạn có thể giúp mình liền ạ. cảm on các bạn nhiều.

 

Nguyễn Lê Phước Thịnh
26 tháng 2 2021 lúc 22:28

a) Xét ΔAFC vuông tại F có \(\widehat{A}=45^0\)(gt)

nên ΔAFC vuông cân tại F(Dấu hiệu nhận biết tam giác vuông cân)

hay FA=FC(Hai cạnh bên)(đpcm)

nguyễn kế tiến
Xem chi tiết
Jennie Kim
27 tháng 7 2019 lúc 18:26

A B C H M N I

HM _|_ AB (gt) 

AB _|_ AC do tam giác ABC vuông tại  A (gt)

AN; HM phân biệt 

=> AN // HM (tc)

=> góc NAH = góc AHM (slt)

xét tam giác NAH và tam giác MHA có : AH chung

góc ANH = góc AMH = 90 

=> tam giác NAH = tam giác MHA (ch-gn)

=> HM = AN (đn)

b,  NA = HM (câu a)

xét tam giác NAM và tam giác HMA có : AM chung

góc NAM = góc HMA = 90 

=> tam giác NAM = tam giác HMA (2cgv)

=> AH = MN (đn)

c, AN // HM (câu a)

=> góc NAH = góc AHM (slt) và góc ANM = góc NMH (slt)

xét tam giác NAI và tam giác MHI có : AN = MH (câu a)

=> tam giác NAI = tam giác MHI (g-c-g)

=> NI = IM (đn)

d,  A B C H M N I

My Trà
Xem chi tiết
Kiều Vũ Linh
2 tháng 5 2023 lúc 9:18

Bài 6

a) (3x² + 5) + [(2x² - 5x) - (5x² + 4)]

= 3x² + 5 + (2x² - 5x - 5x² - 4)

= 3x² + 5 + 2x² - 5x - 5x² - 4

= (3x² + 2x² - 5x²) - 5x + (5 - 4)

= -5x + 1

---------‐----------

b) (x + 2)(x² - 2x + 4)

= x.x² - x.2x + x.4 + 2.x² - 2.2x + 2.4

= x³ - 2x² + 4x + 2x² - 4x + 8

= x³ + (-2x² + 2x²) + (4x - 4x) + 8

= x³ + 8

-------------------

c) (4x³ - 8x² + 13x - 5) : (2x - 1)

= (4x³ - 2x² - 6x² + 3x + 10x - 5) : (2x - 1)

= [(4x³ - 2x²) - (6x² - 3x) + (10x - 5)] : (2x - 1)

= [2x²(2x - 1) - 3x(2x - 1) + 5(2x - 1)] : (2x - 1)

= (2x - 1)(2x² - 3x + 5) : (2x - 1)

= 2x² - 3x + 5

⭐Hannie⭐
2 tháng 5 2023 lúc 10:22