Với a,b là hai số tự nhiên dương thỏa mãn 1/a+1/b=1/4. Tìm hai số nguyên dương a và b đó.
Với a,b là hai số nguyên dương thỏa mãn : 1/a+1/b=1/4 . Tìm hai số nguyên dương a và b đó
với a,b là hai số nguyên dương thỏa mãn 1/a+1/bb=1/4.tìm hai số nguyên dương a và b đó
nhớ kẻ bảng nha
Cosi: ab <= 1/4
Quy đồng P, ta đc:
P = (2ab+1)/(ab+2).
Ta cm P <= 2/3
<=> 3(2ab+1) <= 2(ab+2)
<=> ab<= 1/4 (đúng)
Vậy maxP = 2/3 khi a=b =1/2
Với a,b là 2 số nguyên dương thỏa mãn : \(\frac{1}{a}+\frac{1}{b}=\frac{1}{4}\)Tìm 2 số nguyên dương a và b đó
Tìm tất cả số nguyên dương a,b thỏa mãn \(a^2b^2-4\left(a+b\right)=n^2\) với n là số tự nhiên
1,Cho hai số tự nhiên a và b thỏa mãn a+20, b+13 cùng chia hết cho 21. Tìm số dư cua phép chia
\(4^a+9^b+a+b\) cho 21.
2,Cho p là số nguyên tố .Tìm p để tổng các ước dương cua p^4 là 1 số chinh phương.
Cho hai số nguyên dương \(a;b\) với \(b>1\) và thỏa mãn điều kiện \(A=\dfrac{a^2}{2.a.b^2-b^3+1}\) là số nguyên dương. Chứng minh rằng \(A\) là số chính phương.
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán gợi ý giúp đỡ em với ạ!
Em cám ơn nhiều lắm ạ!
\(\dfrac{a^2}{2ab^2-b^3+1}=m\in Z^+\Rightarrow a^2-2mb^2a.+mb^3-m=0\)
\(\Rightarrow\Delta=4m^2b^4-4mb^3+4m\) là SCP (1)
Ta dễ dàng chứng minh được:
\(4m^2b^4-4mb^3+4m>\left(2mb^2-b-1\right)^2\)
\(\Leftrightarrow4m\left(b^2+1\right)>\left(b+1\right)^2\)
Đúng do: \(2m.2\left(b^2+1\right)\ge2m\left(b+1\right)^2>\left(b+1\right)^2\)
Tương tự, ta cũng có: \(4m^2b^4-4mb^3+4m< \left(2mb^2-b+1\right)^2\)
\(\Leftrightarrow\left(b-1\right)^2+4m\left(b^2-1\right)>0\) (luôn đúng với b>1;m>0)
\(\Rightarrow\left(2mb^2-b-1\right)^2< 4m^2b^4-4mb^3+4m< \left(2mb^2-b+1\right)^2\)
\(\Rightarrow4m^2b^4-4mb^3+4m=\left(2mb^2-b\right)^2\)
\(\Rightarrow b^2=4m\)
\(\Rightarrow b\) chẵn \(\Rightarrow b=2k\Rightarrow m=k^2\)
Thế vào (1) \(\Rightarrow a^2-8k^4a+8k^5-k^2=0\)
\(\Leftrightarrow\left(a-k\right)\left(a-8k^4+k\right)=0\Rightarrow\left[{}\begin{matrix}a=k\\a=8k^4-k\end{matrix}\right.\)
Vậy nghiệm của pt là: \(\left(a;b\right)=\left(k;2k\right);\left(8k^4-k;2k\right)\) với k nguyên dương
1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố
2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố
3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương
4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p
5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab +c ( a + b )
Chứng minh: 8c + 1 là số cp
6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3
Chứng minh: 9x – 1 là lập phương đúng
7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c
8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1
Chứng minh: ( x + y )^2 + ( xy – 1 )^2 không phải là số cp
9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2
10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương
11, Cho các số nguyên n thuộc Z, CM:
A = n^5 - 5n^3 + 4n \(⋮\)30
B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ
C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42
Bài 3. 1) Tim hai số tự nhiên a và b biết rằng a + b = 810 và ước chung lớn nhất của chúng bằng 45. 2) Tìm hai số nguyên tố p và q biết rằng p>q sao cho p+q và p −g đều là các số nguyên tố. Bài 4. 1) Cho hai số tự nhiên a và b thỏa mãn số m=(16a+17b)(17a+16b) là một bội số của 11. Chứng minh rằng số m cũng là một bội số của 121. 2) Tìm tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5 Bài 5. Cho hình vuông ABCD. Phần diện tích chung của ABCD và tam giác EFG được tô đen. Diện tích phần tô đen bằng 4/5 diện tích tam giác EFG và bằng 12 diện tích của hình vuông ABCD. Nếu diện tích tam giác EFG bằng 40cm, tính độ dài cạnh của hình vuông ABCD
1/ a)Cho A= 20+21+22+23+24+25 +26 .........+ 299 CMR: A chia hết cho 31
b)tìm số tự nhiên n để 3n+4 chia hết cho n -1
2/tìm hai số nguyên dương a, b biết [ a,b] = 240 và (a,b) = 16
3/tìm hai số nguyên dương a,b biết rằng ab=216 và (a ,b)=6
4/tìm hai số nguyên dương a,b biết rằng ab=180 , [a,b] =60
5/tìm hai số nguyên dương a,b biết a/b =2,6 và (a,b) =5
6/ tìm a,b biết a/b=4/5 và [ a,b ] = 140
7/tìm số nguyên dương a,b biết a+b = 128 và (a ,b)=16
8/ a)tìm a,b biết a+b = 42 và [a,b] = 72
b)tìm a,b biết a-b =7 , [a,b] =140
9/tìm hai số tự nhiên , biết rằng tổng cúa chúng bằng 100 và có UwCLN là 10
10/ tìm 2 số tự nhiên biết ƯCLN của chúng là 5 và chúng có tích là 300
11/ chứng minh rằng nếu số nguyên tố p> 3 thì (p - 1) . (p + 1) chia hết cho 24
12/ tìm hai số tự nhiên a,b (a < b ) biết ƯCLN (a,b ) = 12 , BCNN(a,b) = 180
BÀI NÀY Ở ĐÂU MÀ NHIỀU THẾ BẠN!?
GIẢI CHẮC ĐÃ LẮM ĐÓ
câu 1 a) thíu là chứng minh rằng a chia hết cho 31