Tìm tất cả các cặp số nguyên dương (a;b) sao cho \(\dfrac{ab\left(a+b\right)}{ab+2}\) là số nguyên
Cho hai số thực dương a, b thỏa mãn \(a+2b\ge3\). Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{3a^2+a^2b+\dfrac{9}{2}ab^2+\left(8+a\right)b^3}{ab}\)
Tìm tất cả các số nguyên dương ( a, b) thỏa mãn điều kiện
\(\dfrac{a^2+b}{a.b-1}\) là số nguyên dương .
P/s: Em nhờ quý thầy cô giáo gợi ý và giúp đỡ em tham khảo với ạ!
Em cám ơn nhiều lắm ạ!
cho a,b,c là các só thực dương thỏa mãn a +2b +3c =13
tìm GTNN của P = \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\)
Tìm tất cả các cặp số nguyên dương (a;b) sao cho \(\dfrac{ab\left(a+b\right)}{ab+2}\)
Cho a,b,c là cái số thực dương thỏa mãn a + b + c = 1 . Tìm giá trị nhỏ nhất của biểu thức : Q = \(\dfrac{\left(1-c\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}+\dfrac{\left(1-a\right)^2}{\sqrt{2\left(c+a\right)^2+ca}}\) + \(\dfrac{\left(1-b\right)^2}{\sqrt{2\left(a+b\right)^2+ab}}\)
Xét các số thực a,b,c với \(b\ne a+c\) sao cho PT bậc 2 \(ax^2+bx+c=0\) có 2 nghiệm thực m,n thỏa mãn \(0\le m,n\le1\). Tìm GTLN và GTNN của biểu thức
\(M=\dfrac{\left(a-b\right)\left(2a-c\right)}{a\left(a-b+c\right)}\)
Tìm tất cả các số nguyên dương n thỏa mãn \(3^n+n^2+23\) là số chính phương.
P/s: Em nhờ quý thầy cô giáo và các bạn yêu toán gợi ý , giúp đỡ em tham khảo với ạ
Em cám ơn nhiều lắm ạ!
Cho ba số nguyên dương a; b và c thỏa mãn (a; b;c) =1 và \(a^2+4b^2+4c^2+7bc=4a.\left(b+c\right)\).
Chứng minh rằng b , c là các số chính phương.
P/s: Nhờ quý thầy cô hỗ trợ và giúp đỡ với ạ! cám ơn nhiều lắm ạ