Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Thị Tèo
Xem chi tiết
Phan Mỹ Quân
27 tháng 2 2018 lúc 21:50

Gỉa sử\(\hept{\begin{cases}7n+4⋮d\left(d\inℤ\right)\\9n+5⋮d\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}63n+36⋮d\\63n+35⋮d\end{cases}}\)

\(\Leftrightarrow\left(63n+36\right)-\left(63n+35\right)⋮d\)

\(\Leftrightarrow63n-63n+36-35⋮d\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\in\left\{-1;1\right\}\)

\(\Leftrightarrow\hept{\begin{cases}7n+4\\9n+5\end{cases}}\)tối giản\(\Leftrightarrow\)đcpm

Chúc bạn học giỏi!

Đừng quên nha! ^-^

Cuber Việt
Xem chi tiết
An Trịnh Hữu
8 tháng 7 2017 lúc 22:42

Giả sử ước chung của 7n+4 và 9n+5 là d; ta có:

-\(\left(7n+4\right)⋮d=>9\left(7n+4\right)=\left(63n+36\right)⋮d\)

- \(\left(9n+5\right)⋮d=>7\left(9n+5\right)=\left(63n+35\right)⋮d\)

Do cả hai số đều chia hết cho d nên hiệu cũng chia hết cho d;

=> (63n + 36) - ( 63n + 35) \(⋮\)d=> \(1⋮d=>d=\pm1\)

Vậy phân số trên luôn tối giản;

CHÚC BẠN HỌC TỐT...

 Mashiro Shiina
8 tháng 7 2017 lúc 22:58

Gọi \(d\)\(UCLN\left(7n+4;9n+5\right)\)

\(\Rightarrow7n+4⋮d\Rightarrow9\left(7n+4\right)⋮d\Rightarrow63n+36⋮d\)

\(\Rightarrow9n+5⋮d\Rightarrow7\left(9n+5\right)⋮d\Rightarrow63n+35⋮d\)

\(\Rightarrow\left(63n+36\right)-\left(63n+35\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow\dfrac{7n+4}{9n+5}\) tối giản với mọi \(n\in N\)

Nguyễn Tử Đằng
9 tháng 7 2017 lúc 8:37

Gọi d là ước chung của 7n +4 và 9n+5 , ta có :

=>( 7n+4) \(⋮\) d => 9.(7n+4)=>(63n+36 ) \(⋮\) d

=>( 9n +5) \(⋮\) d =>7.(9n +5) =>(63n+35) \(⋮\) d

Vì cả hai số trên đều chia hết cho d nên hiệu của chúng cũng chia hết cho d

=> (63n+36) - ( 63n +35 ) \(⋮\)d

=> 1 \(⋮\)d => d = + 1 và -1

Vậy phân số trên luôn tối giản

Phan Nguyễn Ngọc Trâm
Xem chi tiết
Phùng Minh Quân
15 tháng 2 2018 lúc 9:31

\(a)\)\(ƯCLN\left(7n+8;8n+9\right)\)\(d\)

\(\Rightarrow\) \(\left(7n+8\right)⋮d\) và \(\left(8n+9\right)⋮d\)

\(\Rightarrow\)\(8\left(7n+8\right)⋮d\) và \(7\left(8n+9\right)⋮d\)

\(\Rightarrow\)\(\left(56n+64\right)⋮d\) và \(\left(56n+63\right)⋮d\)

\(\Rightarrow\)\(\left(56n+64-56n-63\right)⋮d\)

\(\Rightarrow\)\(1⋮d\)

\(\Rightarrow\)\(d\inƯ\left(1\right)\)

Mà \(Ư\left(1\right)=\left\{1;-1\right\}\) 

Nên \(ƯCLN\left(7n+8;8n+9\right)=\left\{1;-1\right\}\)

Vậy \(\frac{7n+8}{8n+9}\) là phân số tối giản 

nguyen huu quang
19 tháng 2 2018 lúc 9:42
Mặt mi như con trâu
Lê Thị Khánh Linh
Xem chi tiết
Hoàng Khánh Nhi
1 tháng 5 2015 lúc 17:09

Gọi ƯCLN(7n+4;5n+3)=d (d thuộc N*)

(chú ý :chc nghĩa là chia hết cho) 

=>7n+4 chc d =>5(7n+4) chc d=>35n+20 chc d

=>5n+3 chc d =>7(5n+3) chc d=>35n+21 chc d

=>35n+21-35n-20 chc d

=> 1 chc d

vì d thuộc N =>d=1

=>ƯCLN(7n+4;5n+3)=1 (với mọi n)

Vậy phân số 7n+4/5n+3 là phân số tối giản với mọi n

 

Vũ Hà Phương
Xem chi tiết
Vũ Hà Phương
9 tháng 2 2020 lúc 13:47

Nhớ trả lời nhanh nha

Khách vãng lai đã xóa
Nguyễn Thị Mỹ Bình
Xem chi tiết
soyeon_Tiểu bàng giải
5 tháng 8 2016 lúc 10:41

Gọi d = ƯCLN(n - 5; 3n - 14) (d thuộc N*)

=> n - 5 chia hết cho d; 3n - 14 chia hết cho d

=> 3.(n - 5) chia hết cho d; 3n - 14 chia hết cho d

=> 3n - 15 chia hết cho d; 3n - 14 chia hết cho d

=> (3n - 14) - (3n - 15) chia hết cho d

=> 3n - 14 - 3n + 15 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(n - 5; 3n - 14) = 1

=> n - 5/3n - 14 là phân số tối giản (đpcm)

HLTx Lyu
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 4 2022 lúc 20:13

a: Gọi d=UCLN(4n+8;2n+3)

\(\Leftrightarrow4n+8-4n-6⋮d\)

\(\Leftrightarrow2⋮d\)

mà 2n+3 là số lẻ

nên d=1

=>ĐPCM

b: Gọi a=UCLN(7n+4;9n+5)

\(\Leftrightarrow63n+36-63n-35⋮a\)

=>a=1

=>ĐPCM

The darksied
Xem chi tiết
Sakura
Xem chi tiết
Trịnh Việt Anh
18 tháng 9 2016 lúc 22:29

k đúng cho mình với:

gọi d là Ư(21n+4;14n+3)

=>21n+4 và 14n+3 chia hết cho d

=>42n+8 và 42n+9 chia hết cho d

=>42n+9-42n+8 chia hết cho d

=>1 chia hết cho d

=>d thuộc ước của 1

=>d thuộc -1 và 1

=>21n+1/14n+3 là phân số tối giản

Đinh Đức Hùng
10 tháng 2 2017 lúc 13:12

Gọi d là ƯCLN(21n + 4;14n + 3) nên ta có :

21n + 4 ⋮ d và 14n + 3 ⋮ d

<=> 2(21n + 4) ⋮ d và 3(14n + 3) ⋮ d

<=> 42n + 8 ⋮ d và 42n + 9 ⋮ d

=> (42n + 9) - (42n + 8) ⋮ d

=> 1 ⋮ d => d = 1

=> \(\frac{21n+4}{14n+3}\) là phân số tối giản ( đpcm )