cho s=4/9+4/45+4/105+4/189=4/297 chứng tỏ rằng s < 1
S = 1/9 + 1/45 + 1/105 + 1/189 + 1/297
\(S=\frac{1}{9}+\frac{1}{45}+\frac{1}{105}+\frac{1}{189}+\frac{1}{297}=\frac{1}{3}\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)\)
\(=\frac{1}{3}.\frac{1}{2}\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\right)=\frac{1}{6}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)
\(=\frac{1}{6}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)=\frac{1}{6}\left(1-\frac{1}{11}\right)=\frac{1}{6}.\frac{10}{11}\)
\(=\frac{5}{33}\)
Bài làm:
\(S=\frac{1}{9}+\frac{1}{45}+\frac{1}{105}+\frac{1}{189}+\frac{1}{297}\)
\(S=\frac{1}{6}\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\right)\)
\(S=\frac{1}{6}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)
\(S=\frac{1}{6}\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+\frac{11-9}{9.11}\right)\)
\(S=\frac{1}{6}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(S=\frac{1}{6}\left(1-\frac{1}{11}\right)\)
\(S=\frac{1}{6}.\frac{10}{11}=\frac{5}{33}\)
Vậy \(S=\frac{5}{33}\)
Xin lỗi bạn Xyz nhé, mk ko có chép bài bạn đâu! với lại mk cx ko k sai bài bn đâu nhé!
các bạn ơi giúp mik vs nhanh lên nhé
Tìm tổng:
4/45+4/105+4/189+4/297+4/929
ghi rõ các bước làm ra cho mình nhé
Bạn tải photomath về là giải được ngay !
Nhớ k cho mình nhé !
Gọi biểu thức này là A
Ta có :
\(A=\frac{4}{45}+\frac{4}{105}+\frac{4}{189}+\frac{4}{297}+\frac{4}{929}\)
\(\frac{3}{2}A=\frac{3}{2}\times\left(\frac{4}{45}+\frac{4}{105}+\frac{4}{189}+\frac{4}{297}+\frac{4}{929}\right)\)
\(\frac{3}{2}A=\frac{6}{45}+\frac{6}{105}+\frac{6}{189}+\frac{6}{297}+\frac{6}{929}\)
\(\frac{3}{2}A=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{???}\)
Bạn nên xem lại bài
Tìm S =\(\frac{1}{9}+\frac{1}{45}+\frac{1}{105}+\frac{1}{189}+\frac{1}{297}\)
S = \(\frac{1}{9}+\frac{1}{45}+\frac{1}{105}+\frac{1}{189}+\frac{1}{297}\)
S = 1/9 + 1/45 + 1/105 + 1/189 + 1/297
=> S = 1/2 ( 6/27 + 6/135 + 6/315 + 6/567 + 6/891 )
=> S = 1/2 ( 6/3.9 + 6/9.15 + 6/15.21 + 6/21.27 + 6/27.33 )
=> S = 1/2 ( 1/3 - 1/9 + 1/9 - 1/15 + ... + 1/27 - 1/33 )
=> S = 1/2 ( 1/3 - 1/33 )
=> S = 1/2 . 10/33
=> S = 5/33
\(S=\frac{1}{9}+\frac{1}{45}+\frac{1}{105}+\frac{1}{189}+\frac{1}{297}\)
\(S=\frac{1}{1.9}+\frac{1}{9.5}+\frac{1}{5.21}+\frac{1}{21.9}+\frac{1}{9.33}\)
\(5S=\frac{5}{1.9}+\frac{5}{9.5}+\frac{5}{5.21}+\frac{5}{21.9}+\frac{5}{9.33}\)
\(5S=1-\frac{1}{9}+\frac{1}{9}-\frac{1}{5}+\frac{1}{5}+\frac{1}{21}+\frac{1}{21}-\frac{1}{9}+\frac{1}{9}-\frac{1}{33}\)
\(5S=1-\frac{1}{33}\)
\(5S=\frac{32}{33}\)
\(S=\frac{32}{33}:5\)
\(S=\frac{32}{165}\)
Cậu Bé Tiến Pro sai rồi nhé!
\(\frac{5}{1.9}=1-\frac{1}{9}\Leftrightarrow9-1=5\)
-.-
TÍNH
S + \(\frac{1}{9}+\frac{1}{45}+\frac{1}{105}+\frac{1}{189}+\frac{1}{297}\)
4/9+4/45+4/105+4/189
\(\frac{4}{9}+\frac{4}{45}+\frac{4}{105}+\frac{4}{189}\)
\(=\frac{8}{15}+\frac{4}{105}+\frac{4}{189}\)
\(=\frac{4}{7}+\frac{4}{189}\)
\(=\frac{16}{27}\)
Học tốt #
Cho S=1+4+42+43+44+45+...+498+499. Chứng tỏ rằng s chia hết cho 5
Giúp mk với!! Cảm ơn rất nhiều!!!
\(S=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{98}+4^{99}\right)\\ S=\left(1+4\right)+4^2\left(1+4\right)+...+4^{98}\left(1+4\right)\\ S=\left(1+4\right)\left(1+4^2+...+4^{98}\right)=5\left(1+4^2+...+4^{98}\right)⋮5\)
\(S=\left(1+4\right)+...+4^{98}\left(1+4\right)\)
\(=5\left(1+...+4^{98}\right)⋮5\)
Cho S = 1+3+3^2+3^3+3^4+3^5+3^6+3^73^8+3^9. Chứng tỏ rằng S chia hết cho 4
\(S=\left(1+3\right)+...+3^8\left(1+3\right)\)
\(=4\left(1+...+3^8\right)⋮4\)
Cho S = 1+2+2^2+2^3+2^4+2^5+2^6+2^7
Chứng tỏ rằng S chia hết cho 4
Cho S = 1+2+2^2+2^3+2^4+2^5+2^6+2^7
Chứng tỏ rằng S chia hết cho 4 VÀ 13