giải bất phương trình |2x+3| ≥18
Cho bất phương trình 3 - 2x < 15 - 5x và bất phương trình 3 - 2x < 7. Hãy :
a) Giải các bất phương trình đã cho và biểu diễn tập nghiệm của mỗi bất phương trình trên một trục số ( biểu diện hộ luôn đi)
b) Tìm các giá trị nguyên của x thỏa mãn đồng thời cả hai bất phương trình trên ?
Cho biết phương trình:
\(\frac{2-x}{3}\) < \(\frac{3-2x}{5}\)
a) Giải bất phương trình trên
b) Biểu diển tập nghiệm của bất phương trình trên trục số
a) \(\frac{2-x}{3}< \frac{3-2x}{5}\)
<=> \(10-5x< 9-6x\)
<=> x < - 1
Vậy S = { x| x < -1 }
b)
Giải các phương trình và bất phương trình sau
a)\(\left|x-9\right|\) \(=2x+5\)
b) \(\dfrac{1-2x}{4}\) \(-2\) ≤ \(\dfrac{1-5x}{8}\) + x
c)\(\dfrac{2}{x-3}\)\(+\dfrac{3}{x+3}\)\(=\dfrac{3x+5}{x^2-9}\)
|x-9|=2x+5
Xét 3 TH
TH1: x>9 => x-9=2x+5 =>-9-5=x =>x=-14 (L)
TH2: x<9 => 9-x=2x+5 => 9-5=3x =>x=4/3(t/m)
TH3: x=9 =>0=23(L)
Vậy x= 4/3
Ta có:\(\dfrac{1-2x}{4}-2\le\dfrac{1-5x}{8}+x\\ \)
\(\dfrac{2-4x-16}{8}\le\dfrac{1-5x+8x}{8}\)
\(-4x-14\le1+3x\\ \Leftrightarrow7x+15\ge0\\ \Leftrightarrow x\ge-\dfrac{15}{7}\)
Ta có:
\(\dfrac{2}{x-3}+\dfrac{3}{x+3}=\dfrac{3x+5}{x^2-9}\)
\(\dfrac{2\left(x+3\right)+3\left(x-3\right)}{x^2-9}=\dfrac{3x+5}{x^2-9}\)
\(5x-4=3x+5\Leftrightarrow2x=9\Leftrightarrow x=\dfrac{9}{2}\)
Giải bất phương trình và biễu diễn tập nghiệm trên trục số: 2x-3>0
\(\Leftrightarrow2x>3\)
\(\Leftrightarrow x>1,5\)
Vậy nghiệm của bpt là x>1,5
Giải bất phương trình \(\dfrac{x+7}{5}\)+\(\dfrac{4x+5}{3}\)≥0
\(\Leftrightarrow\dfrac{3\left(x+7\right)}{15}+\dfrac{5\left(4x+5\right)}{15}\ge0\)
\(\Leftrightarrow3\left(x+7\right)+5\left(4x+5\right)\ge0\)
\(\Leftrightarrow23x+46\ge0\)
\(\Leftrightarrow23x\ge-46\)
\(\Leftrightarrow x\ge-2\)
Lời giải:
$\frac{x+7}{5}+\frac{4x+5}{3}\geq 0$
$\Leftrightarrow \frac{x}{5}+\frac{4x}{3}+\frac{7}{5}+\frac{5}{3}\geq 0$
$\Leftrightarrow \frac{23}{15}x+\frac{46}{15}\geq 0$
$\Leftrightarrow 23x+46\geq 0$
$\Leftrightarrow 23x\geq -46$
$\Leftrightarrow x\geq -2$
Giải bất phương trình sau: \((x^2-2x-3)^2< x^2(x^2-4x-2)+3\left(5x-1\right)\)
*CỨU VỚI*
ta có: x4-4x3-2x2+12x+9 < x4-4x3-2x2+15x-3
=> x4-4x3-2x2+15x-3 - (x4-4x3-2x2+12x+9) > 0
=> 3x+6>0
(đề bài có cho điều kiện của x thì chứng minh 3x+6>0 là xong ạ)
Ta có: \(\left(x^2-2x-3\right)^2< x^2\left(x^2-4x-2\right)+3\left(5x-1\right)\)
\(\Leftrightarrow x^4+4x^2+9-4x^3-6x^2+12x< x^4-4x^3-2x^2+15x-3\)
\(\Leftrightarrow3x-12>0\)
\(\Leftrightarrow x-4>0\Rightarrow x>4\)
Vậy x > 4
hình như bn @ÀKhôngLỗiChín mới đúng á...mình h lộn
Giải bất phương trình log 2 2 x - 4033 log 2 x + 4066272 ≤ 0
A. 2016 ; 2017
B. 2016 ; 2017
C. 2 2016 ; 2 2017
D. [ 2 2016 ; + ∞ )
Giải bất phương trình:
\(\left(x^2-2x\right)^2-2\left(x-1\right)^2-1\ge0\) (1)
giải bất phương trình 2-5x <= 17
\(2-5x\le17\)
\(\Leftrightarrow-5x\le17-2\)
\(\Leftrightarrow-5x\le15\)
\(\Leftrightarrow x\ge-3\)