Tính. 1/1.3+1/3.5+1/5.7+....+1/2009.2011
a) 1/1.3+1/3.5+1/5.7
b) 1/1.3+1/3.5+1/5.7+...+1/2007.2009+1/2009.2011
a)\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{7}\right)\)
\(=\frac{1}{2}.\frac{6}{7}\)
\(=\frac{3}{7}\)
b)\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009.2011}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)
\(=\frac{1}{2}.\frac{2010}{2011}\)
\(=\frac{1005}{2011}\)
1/1.3+1/3.5+1/5.7+...+1/2009.2011
\(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{2009\cdot2011}\)
\(=\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{2009\cdot2011}\right)\)
\(=\dfrac{1}{2}\cdot\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2009}-\dfrac{1}{2011}\right)\)
\(=\dfrac{1}{2}\cdot\left(1-\dfrac{1}{2011}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2010}{2011}=\dfrac{1005}{2011}\)
= 1/2 . (1/1 - 1/3 + 1/3 - 1/5 +... + 1/2009 - 1/2011)
= 1/2 . (1/1 - 1/2011)
= 1/2 . 2010 / 2011
= 1005/2011
1/1.3+1/3.5+1/5.7+....+1/2009.2011
= \(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{2009.2011}\right)\)
= \(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{2009}-\frac{1}{2011}\right)\)
= \(\frac{1}{2}\left(1-\frac{1}{2011}\right)=\frac{1}{2}.\frac{2010}{2011}=\frac{1005}{2011}\)
1/1.3+1/3.5+1/5.7+...+1/2009.2011
\(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{2009\times2011}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\)
= \(1-\frac{1}{2011}\)
= \(\frac{2010}{2011}\)
Đặt A=1/1.3+1/3.5+1/5.7+...+1/2009.2011
2A=2/1.3+2/3.5+2/5.7+...+2/2009.2011
2A=1/1-1/3+1/3-1/5+1/5-1/7+...+1/2009-1/2011
2A=1-1/2011=2011/2011-1/2011=2010/2011
A=2010/2011.1/2=1005/2011
Đặt A=1/1.3+1/3.5+1/5.7+...+1/2009.2011
2A=2/1.3+2/3.5+2/5.7+...+2/2009.2011
2A=1/1-1/3+1/3-1/5+1/5-1/7+...+1/2009-1/2011
2A=1-1/2011=2011/2011-1/2011=2010/2011
A=2010/2011:2
=1005/2011
Kết quả phép tính: 1/1.3+1/3.5+1/5.7+...+1/2007.2009+1/2009.2011. Giải thích hộ mình nhé
= 1/2 . (1/1 - 1/3 + 1/3 - 1/5 +... + 1/2009 - 1/2011)
= 1/2 . (1/1 - 1/2011)
= 1/2 . 2010 / 2011
= 1005/2011
1/2 ( 2/1.3 + 2/3.5 +...+ 2 /2009.2011)
= 1/2 ( 1/1 - 1/3 + 1/3 - 1/5 +... + 1/2009 - 1/2011)
= 1/2( 1/1 - 1/2011)
= 1/2 . 2010 / 2011
=1005/2011
tính
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2009.2011}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2009.2011}\)
=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\)
=\(1-\frac{1}{2011}\)
=\(\frac{2010}{2011}\)
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}\frac{1}{5\cdot7}+...+\frac{1}{2009\cdot2011}\)
\(=\frac{1\cdot2}{2\cdot1\cdot3}+\frac{1\cdot2}{2\cdot3\cdot5}+\frac{1\cdot2}{2\cdot5\cdot7}+...+\frac{1\cdot2}{2\cdot2009\cdot2011}\)
\(=\frac{1}{2}\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{2009\cdot2011}\right)\)
\(=\frac{1}{2}\cdot\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{2009\cdot2011}\right)\)
\(=\frac{1}{2}\cdot\left(\frac{1}{1}-\frac{1}{2011}\right)\)= .......
Mình không chắc là đúng đâu nha
Cho Mình Hỏi : Tính
1/1.3+1/3.5 + 1/5.7+...+ 1/2009.2011
Giúp mình với ạ .!
=1/2(2/1.3+2/3.5+2/5.7+....+2/2009.2011
=1/2(1/1-1/3+1/3-1/5+1/5-1/7+....+1/2009-1/2011
=1/2(1/1-1/2011)
=1/2.2010/2011
=1005/2011
=1/1-1/3+1/3-1/5+1/5-1/7+....+1/2009-2011
=1-1/2011
=2010/1011
cậu có kết bạn với tớ không
Tính :
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2009.2011}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{2009.2011}=(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2009.2011}):2\)
\(=\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2009}-\frac{1}{2011}\right):2=\left(1-\frac{1}{2011}\right):2=\frac{1}{2}-\frac{1}{4022}=...\)
\(\frac{1}{2}\cdot\left(\frac{2}{1\cdot3}+\cdot\cdot\cdot+\frac{2}{2009\cdot2011}\right)\)
\(=\frac{1}{2}\cdot\left(1-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{2009}-\frac{1}{2011}\right)\)
\(=\frac{1}{2}\cdot\left(1-\frac{1}{2011}\right)\)
\(=\frac{1}{2}\cdot\frac{2010}{2011}\)
\(=\frac{1005}{2011}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2009.2011}\)
đặt tổng trên là S nhân S với 2 rồi khử đi ta đc
=1-1/2011
=2010/2011
Ta có: \(\frac{1.2}{1.3.2}+\frac{1.2}{3.5.2}+\frac{1.2}{5.7.2}+.....+\frac{1.2}{2009.2011}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{2009.2011}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{2009}-\frac{1}{2011}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)
\(=\frac{1}{2}.\frac{2010}{2011}\)
\(=\frac{1005}{2011}\)