a/\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
Tính giá trị của biểu thức:
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(B=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(C=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+....+\frac{1}{990}\)
dễ mà bạn làm từ câu a nếu ra thì các câu khác cũng dễ thôi
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{2009\cdot2010}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(A=1-\frac{1}{2010}\)
\(A=\frac{2009}{2010}\)
a)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}\)
b)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
c)\(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2012.2015}\)
a) = 1-1/2+1/2-1/3+1/3-1/4
= 1-1/4=3/4
b)=1-1/2+1/2-1/3+1/3-1/4+...+1/2016-1/2017+1/2017-1/2018
=1-1/2018=2017/2018
c)=1/2-1/5+1/5-1/8+1/8-1/11+1/2009-1/2012+1/2012-1/2015
= 1/2-1/2015=2015/4030-2/4030=2013/4030
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}=1-\frac{1}{4}=\frac{3}{4}\)
b) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017-2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2017}{2018}\)
c) \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2012.2015}\)
\(=3\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{2012.2015}\right)\)
\(\Leftrightarrow\frac{3}{2}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2012}-\frac{1}{2015}\right)\)
\(=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{2015}\right)\)
\(=\frac{3}{2}.\frac{2013}{4030}\)
\(=\frac{6039}{8060}\)
]\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
Tính A = \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)-\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)+\left(-2-4-6-...-100\right)+\)\(\left(-1.2-2.3-3.4-...-99.100\right)\)
K=\(\frac{4}{2.4}\)+\(\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
F=\(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
I=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(K=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(K=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(K=2\times\frac{502}{1005}\)
\(K=\frac{1004}{1005}\)
\(F=\frac{1}{3.6}+\frac{1}{6.9}+...+\frac{1}{30.33}\)
\(3F=\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{30}-\frac{1}{33}\)
\(3F=\frac{1}{3}-\frac{1}{33}\)
\(F=\frac{10}{33}:3\)
\(F=\frac{10}{99}\)
\(I=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(I=1-\frac{1}{2010}\)
\(I=\frac{2009}{2010}\)
Tính tổng các phân số sau:
\(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) + ... +\(\frac{1}{2009.2010}\)
=1-1/2+1/2-1/3+1/3+1/4+.....+1/2009-1/2010
=1-1/2010
=-1/2009
lâu lằm k làm mấy bài kiểu nay... đúng k bạn ơi?????^-^
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{2009}-\frac{1}{2010}\)
\(=1-\frac{1}{2010}=\frac{2009}{2010}\)
Chứng minh rằng:
a)\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}< \frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
b)\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}< 1-\frac{1}{2.3}\)
Cần gấp, ai nhanh mik tick nha
Ai giúp đi, làm ơnnnnnnnnnnnnnnnnnnn
\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(B=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(B< \frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)
\(B< \frac{50}{60}\Leftrightarrow B< \frac{5}{6}\)
\(\left(1-\frac{1}{1.2}\right).\left(1-\frac{1}{2.3}\right)....\left(1-\frac{1}{2009.2010}\right)\)Tính
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{199.200}\)
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{199\cdot200}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(A=1-\frac{1}{200}\)
\(A=\frac{199}{200}\)
\(A=\frac{1}{1.2}+............+\frac{1}{199.200}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-...........+\frac{1}{199}-\frac{1}{200}\)
\(=1-\frac{1}{200}\)
\(=\frac{199}{200}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{a.\left(a+1\right)}\)
Ta có : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{a\left(a+1\right)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{a}-\frac{1}{a+1}\)
\(=1-\frac{1}{a+1}\)
\(=\frac{a+1}{a+1}-\frac{1}{a+1}=\frac{a}{a+1}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{a\left(a+1\right)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{a}-\frac{1}{a+1}\)
\(=1-\frac{1}{a+1}\)
\(=\frac{a+1}{a+1}-\frac{1}{a+1}\)
\(=\frac{a}{a+1}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{a.\left(a+1\right)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{a}-\frac{1}{a+1}\)
\(=1-\frac{1}{a+1}\)
\(=\frac{a}{a+1}\)
~~~~~~~~~~~~ Ai ngang qua nhớ để lại ~~~~~~~~~~