Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Quang Minh
Xem chi tiết
letienluc
Xem chi tiết
Nguyễn Thị Bảo Tiên
Xem chi tiết
Trang
10 tháng 7 2017 lúc 16:20

theo bài ra ta có:

\(a.b=c\left(1\right)\\ b.c=4a\left(2\right)\\ c.a=9b\left(3\right)\\ \Rightarrow a.b.b.c.c.a=c.4a.9b\) 

\(\Rightarrow\left(abc\right)^2=36abc\\ \Rightarrow abc=36\left(4\right)\) 

thay 1 vào 4 ta có:

\(c^2=36\\ \Rightarrow c=\left\{6;-6\right\}\) 

thay 2 vào 4 ta có:

\(\Rightarrow4a^2=36\\ \Rightarrow a^2=9\\ \Rightarrow a=\left\{3;-3\right\}\) 

thay 3 vào 4 ta có:

\(\Rightarrow9b^2=36\\ \Rightarrow b^2=4\\ \Rightarrow b=\left\{2;-2\right\}\) 

vậy \(a=\left\{6;-6\right\};b=\left\{2;-2\right\};c=\left\{3;-3\right\}\)

LUONG KHANH TOAN
Xem chi tiết
LUONG KHANH TOAN
Xem chi tiết
lol
7 tháng 11 2015 lúc 14:12

cai gi the

 

Tiểu Ẩn
Xem chi tiết
Hoàng Phúc
15 tháng 2 2016 lúc 20:38

Ta có a;b;c có vai trò như nhau nên ta giả sử a<b<c

=>ab+bc+ca<3bc

từ giả thiết abc<ab+bc+ca (*) =>abc<3bc=>a<3,mà a nguyên tố nên a chỉ có thể là 2

thay a vào (*) =>2bc<2b+2c+bc<=>bc<2(b+c)(**)

Mà b<c =>bc<4c=>b<4,mà b nguyên tố nên b E {2;3}

+)b=2,thay vào (**) =>2c<4+2c(đúng với c là số nguyên tố tùy ý)

+)b=2,thay vào (**) =>3c<6+2c=>c<6,mà c nguyên tố =>c E {3;5} đều thỏa mãn

Vậy (a;b;c) \(\in\left\{\left(2;2;c\right);\left(2;3;3\right);\left(2;3;5\right)\right\}\) (với c là số nguyên tố tùy ý)

edogawa conan
Xem chi tiết
Saruhiko Fushimi
8 tháng 1 2016 lúc 5:56

5;7;11

7;11;13

;...........

vô số

I am a cute girl ghost l...
8 tháng 1 2016 lúc 7:46

5;7;11           

7;11;13

.................................. v.v.v vo so

Lại Trọng Hải Nam
Xem chi tiết
Phạm Tuấn Kiệt
31 tháng 12 2015 lúc 8:27

Giả sử a ≤ b ≤ c

⇒ ab + bc + ca ≤ 3bc.

Theo giả thiết abc < ab+ bc + ca (1) nên abc < 3bc

⇒a<3 mà a là số nguyên tố nên a = 2.

Thay a = 2 vào (1) được 2bc<2b+2c+bc

⇒bc<2(b+c) (2)

Vì b ≤ c⇒ bc < 4c ⇒ b < 4.

Vì b là số nguyên tố nên b = 2 hoặc b = 3.

Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý.

Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5

            Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý

OoO Kún Chảnh OoO
31 tháng 12 2015 lúc 8:30

Phạm Tuấn Kiệt coppy

Lại Trọng Hải Nam
Xem chi tiết
Phạm Tuấn Kiệt
31 tháng 12 2015 lúc 8:29

Giả sử a ≤ b ≤ c

⇒ ab + bc + ca ≤ 3bc.

Theo giả thiết abc < ab+ bc + ca (1) nên abc < 3bc

⇒a<3 mà a là số nguyên tố nên a = 2.

Thay a = 2 vào (1) được 2bc<2b+2c+bc

⇒bc<2(b+c) (2)

Vì b ≤ c⇒ bc < 4c ⇒ b < 4.

Vì b là số nguyên tố nên b = 2 hoặc b = 3.

Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý.

Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5

            Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý

OoO Kún Chảnh OoO
31 tháng 12 2015 lúc 8:30

Phạm Tuấn Kiệt copy

 

Lê Phương Thảo
31 tháng 12 2015 lúc 8:32

Giả sử abcab+bc+ca3bc.

Theo giả thiết abc<ab+bc+ca (1)

nên abc<3bca<3 mà a là số nguyên tố nên a = 2.

Thay a = 2 vào (1) được 2bc<2b+2c+bcbc<2(b+c) (2)

Vì bcbc<4cb<4.

Vì b là số nguyên tố nên b = 2 hoặc b = 3.

Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý.

Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5

            Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy