tính tổng các phân số sau
9/20x23+9/23x26+...+9/77x80
32/20x23+32/23x26+...+32/77x80
tính tổng nhế
đặt A=32/20x23+32/23x26+...+32/77x80
\(A=3\left(\frac{3}{20\cdot23}+\frac{3}{23\cdot26}+...+\frac{3}{77\cdot80}\right)\)
\(=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(=3\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(=3\cdot\frac{3}{80}\)
\(=\frac{9}{80}\)
1/20x23+1/23x26+1/26x29+...+1/77x80 bé hơn 1/79
A=1/20*23+1/23*26+...+1/77*80
=1/3(1/20-1/23+1/23-1/26+...+1/77-1/80)
=1/3*3/80=1/80<1/79
\(\frac{1}{20x23}\)+\(\frac{1}{23x26}\)+...+\(\frac{1}{77x80}\)< \(\frac{1}{9}\)
\(\frac{1}{20\cdot23}+\frac{1}{23\cdot26}+...+\frac{1}{77\cdot80}\)
\(=\frac{1}{3}\left[\frac{3}{20\cdot23}+\frac{3}{23\cdot26}+...+\frac{3}{77\cdot80}\right]\)
\(=\frac{1}{3}\left[\frac{1}{20}-\frac{1}{23}+...+\frac{1}{77}-\frac{1}{80}\right]\)
\(=\frac{1}{3}\left[\frac{1}{20}-\frac{1}{80}\right]\)
\(=\frac{1}{3}\left[\frac{4}{80}-\frac{1}{80}\right]\)
\(=\frac{1}{3}\cdot\frac{3}{80}=\frac{1}{1}\cdot\frac{1}{80}=\frac{1}{80}\)
Mà \(\frac{1}{80}< \frac{1}{9}\)nên \(\frac{1}{20\cdot23}+\frac{1}{23\cdot26}+...+\frac{1}{77\cdot80}< \frac{1}{9}\)
Vậy : ...
\(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}\)
\(=\frac{1}{3}.\left(\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(=\frac{1}{3}.\frac{3}{80}\)
\(=\frac{1}{80}< \frac{1}{9}\)
Chứng minh 3^2/20x23 + 3^2/23x26 + ....+ 3^2/77x80 < 1
Xin lỗi mình k bit vit ps
Mik đang can gấp
Đặt \(A=\frac{3^2}{20.23}+\frac{3^2}{23.26}+...+\frac{3^2}{77.80}\) ta có :
\(A=3\left(\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\right)\)
\(A=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(A=3\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(A=3.\frac{3}{80}\)
\(A=\frac{9}{80}< 1\) ( tử bé hơn mẫu )
Vậy \(A< 1\)
Chúc bạn học tốt ~
Các bạn ơi , giúp mình với :
a) 1/1x3 + 1/3x5 + 1/5x7 +...+ 1/2007x2009 b) 1/18 + 1/54 + 1/108 +....+ 1/990
c) 4/2x4 + 4/4x6 + 4/4x8 +...+ 4/2008x2010 d) 32/20x23 + 32/23x26 +...+32/77x80
Ai giải nhanh nhất mình tích cho !
a) \(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{2007x2009}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2007}-\frac{1}{2009}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{2009}\right)=\frac{1}{2}\cdot\frac{2008}{2009}=\frac{1004}{2009}\)
....
các bài cn lại bn lm tương tự nha
b, \(\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+...+\dfrac{1}{990}\)
3A = \(\dfrac{1}{6}+\dfrac{1}{18}+...+\dfrac{1}{330}\)
3A-A = \(\dfrac{1}{6}-\dfrac{1}{990}\)
2A = 82/495
A =82/495 : 2
A=41/495
c, \(\dfrac{4}{2.4}+\dfrac{4}{4.6}+\dfrac{4}{6.8}+...+\dfrac{4}{2008.2010}\)
A= \(\dfrac{4}{2}.\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{2008.2010}\right)\)
A= \(\dfrac{4}{2}.\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)
A= \(\dfrac{4}{2}.\left(\dfrac{1}{2}-\dfrac{1}{1010}\right)\)
A= \(\dfrac{4}{2}.\dfrac{252}{505}\)
A= \(\dfrac{504}{505}\)
a) 1/1x3 + 1/3x5 + 1/5x7 +...+ 1/2007x2009
b) 3^2/20x23 + 3^2/23x26 +...+ 3^2/77x80
c) 4/2x4 + 4/4x6 + 4/4x8 +...+ 4/2008x2010
d) 1/18 + 1/54 + 1/108 +...+ 1/990
e) B= 1 + 3 +3^2 +...+ 3^100
f) A= 2^0 + 2^1 + 2^2 +...+ 2^2010
g) S= 1 + 2 + 2^2 + 2^3 +...+ 2^2008 / 1 - 2^2009
Ai giúp mình câu này với:
1/11x14+1/14x17+1/17x20+1/20x23+1/23x26
\(\frac{1}{11×14}+\frac{1}{14×17}+\frac{1}{17×20}+\frac{1}{20×23}+\frac{1}{23×26}\)
\(=\frac{1}{3}×\left(\frac{3}{11×14}+\frac{3}{14×17}+\frac{3}{17×20}+\frac{3}{20×23}+\frac{3}{23×26}\right)\)
\(=\frac{1}{3}×\left(\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{23}-\frac{1}{26}\right)\)
\(=\frac{1}{3}×\left(\frac{1}{11}-\frac{1}{26}\right)\)
\(=\frac{1}{3}×\frac{15}{286}\)
\(=\frac{5}{286}\)
\(\frac{1}{11\times14}+\frac{1}{14\times17}+\frac{1}{17\times20}+\frac{1}{20\times23}+\frac{1}{23\times26}\)
\(=\frac{1}{3}\times\left(\frac{1}{11\times14}+\frac{1}{14\times17}+\frac{1}{17\times20}+\frac{1}{20\times23}+\frac{1}{23\times26}\right)\)
\(=\frac{1}{3}\times\left(\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}+\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}\right)\)
\(=\frac{1}{3}\times\left(\frac{1}{11}-\frac{1}{26}\right)\)
= 5/286
Đặt biểu thức trên là A. Ta có :
3A = \(\frac{3}{11x14}+\frac{3}{14x17}+\frac{3}{17x20}+\frac{3}{20x23}+\frac{3}{23x26}\)
3A = \(\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}+\frac{1}{23}-\frac{1}{26}\)
3A = \(\frac{1}{11}-\frac{1}{26}=\frac{15}{286}\)
A = \(\frac{15}{286}:3=\frac{5}{286}\)
Vậy A = \(\frac{15}{286}\)
quy đồng các mẫu số sau
9 phần 12 và 7 phần 15
7 phần 10, 3 phần 5 và 9 phần 14
nêu các bước và số chung
\(\dfrac{9}{12}=\dfrac{45}{60}\)
\(\dfrac{7}{15}=\dfrac{28}{60}\)
quy đồng các mẫu số sau
9 phần 12 và 7 phần 15
7 phần 10, 3 phần 5 và 9 phần 14
\(\dfrac{9}{12}=\dfrac{135}{180}\)
\(\dfrac{7}{15}=\dfrac{84}{180}\)