Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vu pham
Xem chi tiết
vu pham
23 tháng 3 2023 lúc 21:20

help

 

Nguyễn Lê Phước Thịnh
24 tháng 3 2023 lúc 10:09

Để C là số nguyên thì x chia hết cho 2x-1

=>2x chia hết cho 2x-1

=>2x-1+1 chia hết cho 2x-1

=>\(2x-1\in\left\{1;-1\right\}\)

mà x lớn nhất

nên 2x-1=1

=>x=1

Nguyễn Ngọc Thanh Trà
Xem chi tiết

ta có \(\dfrac{6-x}{x-3}\)\(\dfrac{ }{ }\)=\(\dfrac{2-\left(x-3\right)}{x-3}\)=\(\dfrac{2}{x-3}\)-1

để biểu thức có GTNN thì \(\dfrac{2}{x-3}\)có GTNN

với x>3  suy ra x-3>0 thì \(\dfrac{2}{x-3}\)>0

với x<3 suy ra x-3<0 thì \(\dfrac{2}{x-3}\)<0                     (1)

vì \(\dfrac{2}{x-3}\)âm nên \(\dfrac{2}{x-3}\)nhỏ nhất khi số đối của nó \(\dfrac{2}{3-x}\)lớn nhất 

phân số \(\dfrac{2}{3-x}\)có tử và mẫu đều dương tử ko đổi nên phân số có GTLN khi mẫu có GTNN tức là 3-x có GTNN

mà x là số nguyên 

nên 3-x là số nguyên dương nhỏ nhất 

suy ra 3-x=1 suy ra x=2                                          

khi đó \(\dfrac{2}{3-x}\)=2 suy ra \(\dfrac{2}{x-3}\)=-2                                         (2)

Từ (1) và (2) suy ra \(\dfrac{2}{x-3}\)có GTNN là -2

Vây biểu thức đã cho có GTNN là -3 khi x=2

 

 

 

Chi Nguyễn
Xem chi tiết
Lê Thị Nhung
26 tháng 2 2020 lúc 9:53

Vì f(x) = g(x) 

suy ra 2x=-x+3

suy ra 3x=3

suy ra x=1

Khách vãng lai đã xóa
Đặng Văn Anh
Xem chi tiết
Akai Haruma
15 tháng 1 lúc 19:18

Lời giải:

\(C=\frac{x+\sqrt{x}+17}{x+\sqrt{x}}=1+\frac{17}{x+\sqrt{x}}\)

Để $C$ nhỏ nhất thì $\frac{17}{x+\sqrt{x}$ nhỏ nhất

Tức là $x+\sqrt{x}$ lớn nhất với mọi $x\geq 0$

Khi $x\geq 0$ thì ta không thể tìm GTLN của $x+\sqrt{x}$ vì cứ cho $x$ tăng vô hạn thì $x+\sqrt{x}$ cũng tăng vô hạn.

Vì vậy biểu thức C không có min bạn nhé. Bạn cần bổ sung thêm điều kiện khác về $x$ để tìm.

tường vy
Xem chi tiết
Huỳnh Quang Sang
18 tháng 8 2020 lúc 10:11

Vì \(\hept{\begin{cases}\left|x-5\right|\ge0\forall x\\\left|x+y+7\right|\ge0\forall x,y\end{cases}}\Rightarrow\left|x-5\right|+\left|x+y+7\right|\ge0\forall x,y\)

=> \(\left|x+5\right|+\left|x+y+7\right|+25\ge25\forall x,y\)

Dấu " = " xảy ra khi và chỉ khi \(\hept{\begin{cases}\left|x+5\right|=0\\\left|x+y+7\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\\left|-5+y+7\right|=0\end{cases}}\)

=> \(\hept{\begin{cases}x=-5\\\left|2+y\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=-2\end{cases}}\)

Vậy GTNN của T là 25 khi x = -5,y = -2

Khách vãng lai đã xóa
Nguyễn Hữu Quốc Đạt
18 tháng 8 2020 lúc 10:14

ĐA LÀ 69 NHA E

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
18 tháng 8 2020 lúc 10:18

\(T=\left|x-5\right|+\left|x+y+7\right|+25\)

Ta có : \(\hept{\begin{cases}\left|x-5\right|\ge0\forall x\\\left|x+y+7\right|\ge0\forall x,y\end{cases}}\Rightarrow\left|x-5\right|+\left|x+y+7\right|\ge0\forall x,y\)

\(\Rightarrow\left|x-5\right|+\left|x+y+7\right|+25\ge25\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-5=0\\x+y+7=0\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\x+y+7=0\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\y=-12\end{cases}}\)

=> MinT = 25 <=> x = 5 , y = -12

Khách vãng lai đã xóa
hoàng ling
Xem chi tiết
Đặng Tiến
1 tháng 8 2016 lúc 20:15

Giá trị nhỏ nhất:

\(A=x^2+4x+3=x^2+2.x.2+2^2-1=\left(x+2\right)^2-1\)

Vì \(\left(x+2\right)^2\ge0\)

nên \(\left(x+2\right)^2-1\ge-1\)

Vậy \(Min_A=-1\)khi  \(x+2=0\Leftrightarrow x=-2\)

\(B=3x^2-5x+2=3\left(x^2-\frac{5}{3}x+\frac{2}{3}\right)=3\left[x^2-2.x.\frac{5}{6}+\left(\frac{5}{6}\right)^2-\frac{1}{36}\right]=3\left(x-\frac{5}{6}\right)^2-\frac{1}{12}\)

Vì \(\left(x-\frac{5}{6}\right)^2\ge0\)

nên \(3\left(x-\frac{5}{6}\right)^2\ge0\)

do đó \(3\left(x-\frac{5}{6}\right)^2-\frac{1}{12}\ge-\frac{1}{12}\)

Vậy \(Min_B=-\frac{1}{12}\)khi \(x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)

Giá trị lớn nhất:

\(C=2x-x^2=-\left(x^2-2x\right)=-\left(x^2-2.x+1-1\right)=-\left(x-1\right)^2+1\)

Vì \(\left(x-1\right)^2\ge0\)

nên \(-\left(x-1\right)^2\le0\)

do đó \(-\left(x-1\right)^2+1\le1\)

Vậy \(Max_C=1\)khi \(x-1=0\Leftrightarrow x=1\)

\(D=x-x^2+1=-\left(x^2-x+1\right)=-\left[x^2-2.x\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\)

nên \(-\left(x-\frac{1}{2}\right)^2\le0\)

do đó \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\)

Vậy \(Max_D=-\frac{3}{4}\)khi \(x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

NinhTuấnMinh
Xem chi tiết
Xyz OLM
28 tháng 2 2021 lúc 9:44

Ta có: A = (x + 2)(x - 3)

= x2 - x - 6

=\(x^2-2.\frac{1}{2}.x+\frac{1}{4}-\frac{25}{4}\)

\(\left(x-\frac{1}{2}\right)^2-\frac{25}{4}\ge-\frac{25}{4}\)

Dấu "=" xảy ra <=> \(x-\frac{1}{2}=0\Rightarrow x=0,5\)

Vậy Min A = -25/4 <=> x = 0,5

Khách vãng lai đã xóa
nguyến thị hoàng hà
Xem chi tiết
Hạnh
Xem chi tiết
Minnie
Xem chi tiết
Đào Thụy Anh
28 tháng 4 2016 lúc 15:11

=>-3<x-2<3

-3+2<x<3+2

-1<x<5 =>x=0;1;2;3;4

Yuu Shinn
28 tháng 4 2016 lúc 15:23

999 - 888 - 111 + 111 - 111 + 111 - 111

= 111 - 111 + 111 -111 + 111 - 111

= 0 + 111 - 111 + 111 - 111

= 111 - 111 + 111 - 111

= 0 + 111 - 111

= 111 - 111

= 0

Đáp số: 0

Hãy nhìn xa trông rộng đ...
28 tháng 4 2016 lúc 15:49

|x-2|>=0

Mà ta có |x-2|<3

suy ra |x-2|={0;1;2}

suy ra x-2=0;1;-1;2;-2

tự giải ra nha