ta có \(\dfrac{6-x}{x-3}\)\(\dfrac{ }{ }\)=\(\dfrac{2-\left(x-3\right)}{x-3}\)=\(\dfrac{2}{x-3}\)-1
để biểu thức có GTNN thì \(\dfrac{2}{x-3}\)có GTNN
với x>3 suy ra x-3>0 thì \(\dfrac{2}{x-3}\)>0
với x<3 suy ra x-3<0 thì \(\dfrac{2}{x-3}\)<0 (1)
vì \(\dfrac{2}{x-3}\)âm nên \(\dfrac{2}{x-3}\)nhỏ nhất khi số đối của nó \(\dfrac{2}{3-x}\)lớn nhất
phân số \(\dfrac{2}{3-x}\)có tử và mẫu đều dương tử ko đổi nên phân số có GTLN khi mẫu có GTNN tức là 3-x có GTNN
mà x là số nguyên
nên 3-x là số nguyên dương nhỏ nhất
suy ra 3-x=1 suy ra x=2
khi đó \(\dfrac{2}{3-x}\)=2 suy ra \(\dfrac{2}{x-3}\)=-2 (2)
Từ (1) và (2) suy ra \(\dfrac{2}{x-3}\)có GTNN là -2
Vây biểu thức đã cho có GTNN là -3 khi x=2