Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 1 2019 lúc 2:46

Đáp án B

Ta có 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 7 2018 lúc 9:40

Hacker lỏd
Xem chi tiết

Ta có: \(2x^2+y^2+3xy-3x-3y+11=0\)

=>\(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

\(\Delta=\left(3y-3\right)^2-4\cdot2\cdot\left(y^2-3y+11\right)\)

\(=9y^2-18y+9-8y^2+24y-88=y^2+6y-79\)

\(=y^2+6y+9-88=\left(y+3\right)^2-88\)

Để phương trình có nghiệm nguyên thì Δ phải là số chính phương

=>\(\left(y+3\right)^2-88=k^2\left(k\in Z\right)\)

=>\(\left(y+3\right)^2-k^2=88\)

=>(y+3-k)(y+3+k)=88

=>(y+3-k;y+3+k)∈{(1;88);(88;1);(-1;-88);(-88;-1);(2;44);(44;2);(-2;-44);(-44;-2);(4;22);(-4;-22);(22;4);(-22;-4);(8;11);(-8;-11);(11;8);(-11;-8)}

TH1: y+3-k=1 và y+3+k=88

=>y+3-k+y+3+k=1+88

=>2y+6=89

=>2y=83

=>y=41,5(loại)

TH2: y+3-k=88 và y+3+k=1

=>y+3-k+y+3+k=1+88

=>2y+6=89

=>2y=83

=>y=41,5(loại)

TH3: y+3-k=-1 và y+3+k=-88

=>=>y+3-k+y+3+k=-1-88

=>2y+6=-89

=>2y=-95

=>y=-47,5(loại)

TH4: y+3-k=-88 và y+3+k=-1

=>=>y+3-k+y+3+k=-1-88

=>2y+6=-89

=>2y=-95

=>y=-47,5(loại)

TH5: y+3-k=2 và y+3+k=44

=>y+3-k+y+3+k=2+44

=>2y+6=46

=>2y=40

=>y=20(nhận)

\(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x^2+x\left(3\cdot20-3\right)+20^2-3\cdot20+11=0\)

=>\(2x^2+57x+351=0\)

=>\(\left(2x+39\right)\left(x+9\right)=0\)

=>\(\left[\begin{array}{l}2x+39=0\\ x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=-39\\ x=-9\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac{39}{2}\left(loại\right)\\ x=-9\left(nhận\right)\end{array}\right.\)

TH6: y+3-k=44 và y+3+k=2

=>y+3-k+y+3+k=2+44

=>2y+6=46

=>2y=40

=>y=20(nhận)

\(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x^2+x\left(3\cdot20-3\right)+20^2-3\cdot20+11=0\)

=>\(2x^2+57x+351=0\)

=>\(\left(2x+39\right)\left(x+9\right)=0\)

=>\(\left[\begin{array}{l}2x+39=0\\ x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=-39\\ x=-9\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac{39}{2}\left(loại\right)\\ x=-9\left(nhận\right)\end{array}\right.\)

TH7: y+3-k=-2 và y+3+k=-44

=>y+3-k+y+3+k=-2-44

=>2y+6=-46

=>2y=-52

=>y=-26

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x^2+x\cdot\left\lbrack3\cdot\left(-26\right)-3\right\rbrack+\left(-26\right)^2-3\cdot\left(-26\right)+11=0\)

=>\(2x^2-81x+765=0\)

=>(x-15)(2x-51)=0

=>\(\left[\begin{array}{l}x-15=0\\ 2x-51=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{51}{2}\left(loại\right)\end{array}\right.\)

TH8: y+3-k=-44 và y+3+k=-2

=>y+3-k+y+3+k=-2-44

=>2y+6=-46

=>2y=-52

=>y=-26

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x^2+x\cdot\left\lbrack3\cdot\left(-26\right)-3\right\rbrack+\left(-26\right)^2-3\cdot\left(-26\right)+11=0\)

=>\(2x^2-81x+765=0\)

=>(x-15)(2x-51)=0

=>\(\left[\begin{array}{l}x-15=0\\ 2x-51=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{51}{2}\left(loại\right)\end{array}\right.\)

TH9: y+3-k=4 và y+3+k=22

=>y+3-k+y+3+k=4+22

=>2y+6=26

=>2y=20

=>y=10

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x_{}^2+x\left(3\cdot10-3\right)+10^2-3\cdot10+11=0\)

=>\(2x^2+27x+81=0\)

=>\(2x^2+18x+9x+81=0\)

=>(x+9)(2x+9)=0

=>\(\left[\begin{array}{l}x+9=0\\ 2x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-9\left(nhận\right)\\ x=-\frac92\left(loại\right)\end{array}\right.\)

TH10: y+3-k=22 và y+3+k=4

=>y+3-k+y+3+k=4+22

=>2y+6=26

=>2y=20

=>y=10

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x_{}^2+x\left(3\cdot10-3\right)+10^2-3\cdot10+11=0\)

=>\(2x^2+27x+81=0\)

=>\(2x^2+18x+9x+81=0\)

=>(x+9)(2x+9)=0

=>\(\left[\begin{array}{l}x+9=0\\ 2x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-9\left(nhận\right)\\ x=-\frac92\left(loại\right)\end{array}\right.\)

TH11: y+3-k=-4 và y+3+k=-22

=>y+3-k+y+3+k=-4-22

=>2y+6=-26

=>2y=-32

=>y=-16

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x_{}^2+x\cdot\left\lbrack3\cdot\left(-16\right)-3\right\rbrack+\left(-16\right)^2-3\cdot\left(-16\right)+11=0\)

=>\(2x^2-51x+315=0\)

=>\(2x^2-30x-21x+315=0\)

=>(x-15)(2x-21)=0

=>\(\left[\begin{array}{l}x-15=0\\ 2x-21=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{21}{2}\left(loại\right)\end{array}\right.\)

TH12: y+3-k=-22 và y+3+k=-4

=>y+3-k+y+3+k=-4-22

=>2y+6=-26

=>2y=-32

=>y=-16

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x_{}^2+x\cdot\left\lbrack3\cdot\left(-16\right)-3\right\rbrack+\left(-16\right)^2-3\cdot\left(-16\right)+11=0\)

=>\(2x^2-51x+315=0\)

=>\(2x^2-30x-21x+315=0\)

=>(x-15)(2x-21)=0

=>\(\left[\begin{array}{l}x-15=0\\ 2x-21=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{21}{2}\left(loại\right)\end{array}\right.\)

TH13: y+3-k=8 và y+3+k=11

=>y+3-k+y+3+k=8+11

=>2y+6=19

=>2y=13

=>y=6,5(loại)

TH14: y+3-k=11 và y+3+k=8

=>y+3-k+y+3+k=8+11

=>2y+6=19

=>2y=13

=>y=6,5(loại)

TH15: y+3-k=-8 và y+3+k=-11

=>y+3-k+y+3+k=-8-11

=>2y+6=-19

=>2y=-25

=>y=-12,5(loại)

TH16: y+3-k=-11 và y+3+k=-8

=>y+3-k+y+3+k=-8-11

=>2y+6=-19

=>2y=-25

=>y=-12,5(loại)

ngo quoc
Xem chi tiết
Trần Nam Khánh
Xem chi tiết
Nguyễn Thị Thương Hoài
26 tháng 12 2022 lúc 22:31

a, 3x ( y+1) + y + 1 = 7

(y+1)(3x +1) =7

th1 : \(\left\{{}\begin{matrix}y+1=1\\3x+1=7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\)

th2: \(\left\{{}\begin{matrix}y+1=-1\\3x+1=-7\end{matrix}\right.\)=> x = -8/3 (loại)

th3: \(\left\{{}\begin{matrix}y+1=7\\3x+1=1\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}y=6\\x=0\end{matrix}\right.\)

th 4 : \(\left\{{}\begin{matrix}y+1=-7\\3x+1=-1\end{matrix}\right.\)=> x=-2/3 (loại)

Vậy (x,y)= (2 ;0);  (0; 6)

b, xy - x + 3y - 3 = 5

   (x( y-1) + 3( y-1) = 5

          (y-1)(x+3) = 5

 th1: \(\left\{{}\begin{matrix}y-1=1\\x+3=5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=2\\x=8\end{matrix}\right.\)

th2: \(\left\{{}\begin{matrix}y-1=-1\\x+3=-5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=-8\end{matrix}\right.\)

th3: \(\left\{{}\begin{matrix}y-1=5\\x+3=1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=6\\x=-2\end{matrix}\right.\)

th4: \(\left\{{}\begin{matrix}y-1=-5\\x+3=-1\end{matrix}\right.\) =>  \(\left\{{}\begin{matrix}y=-4\\x=-4\end{matrix}\right.\)

vậy (x, y) = ( 8; 2); ( -8; 0);  (-2; 6); (-4; -4)

c, 2xy + x + y = 7 => y = \(\dfrac{7-x}{2x+1}\) ; y ϵ Z ⇔ 7-x ⋮ 2x+1

⇔ 14 - 2x ⋮ 2x + 1 ⇔ 15 - 2x - 1  ⋮ 2x + 1

th1 : 2x + 1 = -1=> x = -1; y = \(\dfrac{7-(-1)}{-1.2+1}\) = -8

th2: 2x+ 1 = 1=> x =0; y = 7

th3: 2x+1 = -3 => x =  x=-2  => y = \(\dfrac{7-(-2)}{-2.2+1}\) = -3 

th4: 2x+ 1 = 3 => x = 1 => y = \(\dfrac{7+1}{2.1+1}\) = 2

th5: 2x + 1 = -5 => x = -3=> y = \(\dfrac{7-(-3)}{-3.2+1}\) = -2

th6: 2x + 1 = 5 => x = 2; ; y = \(\dfrac{7-2}{2.2+1}\) =1

th7 : 2x + 1 = -15 => x = -8; y = \(\dfrac{7-(-8)}{-8.2+1}\) = -1

th8 : 2x+1 = 15 => x = 7; y = \(\dfrac{7-7}{2.7+1}\) = 0

kết luận

(x,y) = (-1; -8); (0 ;7); ( -2; -3) ; ( 1; 2); ( -3; -2); (2;1); (-8;-1);(7;0)

 

    

 

 

 

   

Ngô Nhật Minh
26 tháng 12 2022 lúc 21:46

 

3xy−2x+5y=293xy−2x+5y=29

9xy−6x+15y=879xy−6x+15y=87

(9xy−6x)+(15y−10)=77(9xy−6x)+(15y−10)=77

3x(3y−2)+5(3y−2)=773x(3y−2)+5(3y−2)=77

(3y−2)(3x+5)=77(3y−2)(3x+5)=77

⇒(3y−2)⇒(3y−2) và (3x+5)(3x+5) là Ư(77)=±1,±7,±11,±77Ư(77)=±1,±7,±11,±77

Ta có bảng giá trị sau:

Do x,y∈Zx,y∈Z nên (x,y)∈{(−4;−3),(−2;−25),(2;3),(24;1)}

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 3 2018 lúc 4:24

ĐK:

Ta có

log 3 1 - y x + 3 x y = 3 x y + x + 3 y - 4

Xét hàm số f ( x ) = log 3 t + 3 t t > 0

có f ' ( t ) = 1 t ln 3 + 3 > 0 ; ∀ t > 0  nên hàm số đồng biến trên 0 ; + ∞

Kết hợp (*) suy ra

Xét P = x + y ⇒ x = P - y  thay vào (**) ta được

Ta tìm giá trị nhỏ nhất của g ( y ) = 3 y 2 - 2 y + 3 3 y + 1  trên (0;1)

Ta có

Giải phương trình

Lại có g ' ( y ) < 0 ∀ y ∈ 0 ; - 1 + 2 3 3

g ' ( y ) > 0 ∀ y ∈ - 1 + 2 3 3 ; 1

Hay g'(y) đổi dấu từ âm sang dương tại y = - 1 + 2 3 3  nên

⇒ P m i n = 4 3 - 4 3

Chọn đáp án A.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 4 2019 lúc 12:15

Đáp án A

Nguyễn Văn Vi Duy Hưng
Xem chi tiết
Akai Haruma
25 tháng 2 2023 lúc 23:28

Lời giải:

$3xy+2x-5y=6$

$x(3y+2)-5y=6$

$3x(3y+2)-15y=18$

$3x(3y+2)-5(3y+2)=8$

$(3y+2)(3x-5)=8$

Đến đây lập bảng xét giá trị thôi bạn.

Nguyễn tiến gia bảo
10 tháng 3 lúc 15:20

3xy+2x−5y=6


𝑥

(

3

𝑦

+

2

)

5

𝑦

=

6

x(3y+2)−5y=6


3

𝑥

(

3

𝑦

+

2

)

15

𝑦

=

18

3x(3y+2)−15y=18


3

𝑥

(

3

𝑦

+

2

)

5

(

3

𝑦

+

2

)

=

8

3x(3y+2)−5(3y+2)=8


(

3

𝑦

+

2

)

(

3

𝑥

5

)

=

8

(3y+2)(3x−5)=8


Đến đây lập bảng xét giá trị thôi bạn.

Phạm Hải Yến
Xem chi tiết
Nguyễn Linh Chi
22 tháng 11 2019 lúc 22:37

b. Câu hỏi của Tiểu thư họ Vũ - Toán lớp 9 - Học toán với OnlineMath

Khách vãng lai đã xóa