Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thanh tat
Xem chi tiết
Krish
Xem chi tiết
qwerty
Xem chi tiết
Dãy số
Xem chi tiết
Lê Song Phương
23 tháng 8 2023 lúc 20:03

 Viết lại đề: \(\left\{{}\begin{matrix}u_1=\dfrac{1}{7}\\u_{n+1}=\dfrac{u_n\left(1-u_n^8\right)}{1+u_n}\end{matrix}\right.\)

 *Tính \(\lim\limits_{n\rightarrow+\infty}u_n\):

 Bằng quy nạp, dễ chứng minh được \(0< u_n< 1,\forall n=1,2,...\)

 Ta có \(u_{n+1}-u_n=\dfrac{-u_n^9-u_n^2}{1+u_n}< 0\) nên \(\left(u_n\right)\) là dãy giảm. Mà \(\left(u_n\right)\) bị chặn nên \(\left(u_n\right)\) có giới hạn hữu hạn.

 Đặt \(\lim\limits_{n\rightarrow+\infty}u_n=L\left(0\le L< 1\right)\) thì \(L=\dfrac{L\left(1-L^8\right)}{1+L}\)

 \(\Leftrightarrow\left[{}\begin{matrix}L=0\\\dfrac{1-L^8}{1+L}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}L=0\\1-L^8=1+L\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}L=0\\L=-1\end{matrix}\right.\)

\(\Rightarrow L=0\) \(\Rightarrow\lim\limits_{n\rightarrow+\infty}u_n=0\)

 

 

 

 

 

 

Minh Nguyệt
Xem chi tiết
Akai Haruma
28 tháng 3 2021 lúc 21:09

Lời giải:

$\frac{u_{n-1}}{u_n}=\frac{n^2}{n^2-1}>0$ với mọi $n\geq 2$ nên $u_{n-1}, u_n$ luôn cùng dấu.

Mà $u_1=2017>0$ nên $u_n>0$ với mọi $n=1,2,...$

Mặt khác:

$n^2(u_{n-1}-u_n)=u_{n-1}>0\Rightarrow u_{n-1}>u_n$ nên dãy $(u_n)$ là dãy giảm.

Dãy giảm và bị chặn dưới nên $u_n$ hội tụ. Đặt $\lim u_n=a$. 

Ta có: $a=n^2(a-a)\Rightarrow a=0$

Vậy $\lim u_n=0$

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 4 2018 lúc 4:32

Chọn C

1. u n = 3 n + 1                   2. u n = 4 − 5 n  

3. u n = 2 n + 3 5                      4. u n = n + 1 n  

 

* Xét dãy số: u n = 3 n + 1   

Ta có: 

u n + 1 − u n = 3 ( n + 1 ) + 1 − 3 n − 1 = 3

Dãy số này là cấp số cộng có công sai d= 3.

* Xét dãy số u n = 4 − 5 n .

Ta có: 

u n + 1 − u n = 4 −    5 ( n + 1 ) −     ( 4 − 5 n ) = − 5

Dãy số này là  cấp số cộng có công sai d =  -5

* Xét dãy số  u n = 2 n + 3 5

Ta có: 

u n + 1 − u n =    2 ( n + 1 ) + ​ 3 5 −    2 n + 3 5 = 2 5 .

Dãy (un) là cấp số cộng có công sai  d = 2 5

* Xét dãy số  u n = n + 1 n

Ta có:

u n + 1 − u n =    n + 1 + ​ 1 n + 1 −    n + 1 n =    ( n + ​ 2 ) . n − ( n + 1 ) 2 n . ( n + 1 ) = − 1 n ( n + 1 ) ⇒ ( u n )

 không là cấp số cộng

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 6 2018 lúc 2:33

Chọn C.

Chứng minh bằng phương pháp quy nạp toán học ta có n 2n, n N

Nên ta có : 

Suy ra : 

mà .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 2 2018 lúc 12:28

a)u(n+1) = 1 + 1/(n+1); v(n+1) = 5(n + 1) - 1 = 5n + 4

b) Ta có:

Giải bài tập Toán 11 | Giải Toán lớp 11

⇒ u(n+1) < un, ∀n ∈ N*

v(n+1) - vn = (5n + 4) - (5n - 1) = 5 > 0

⇒ v(n+1) > vn ,∀n ∈ N*

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 11 2019 lúc 9:37

Đáp án là A