Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Anh Dũng An
Xem chi tiết
Nyatmax
22 tháng 8 2019 lúc 9:23

\(A=\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}=x\left(1-\frac{y^2}{1+y^2}\right)+y\left(1-\frac{z^2}{1+z^2}\right)+z\left(1-\frac{x^2}{1+x^2}\right)\)

\(\Rightarrow A\ge x\left(1-\frac{y}{2}\right)+y\left(1-\frac{z}{2}\right)+z\left(1-\frac{x}{2}\right)=\left(x+y+z\right)-\frac{xy+yz+zx}{2}\ge3-\frac{\frac{9}{3}}{2}=\frac{3}{2}\)

Dau '=' xay ra khi \(x=y=z=1\)

Vay \(A_{min}=\frac{3}{2}\)khi \(x=y=z=1\)

Nguyễn Anh Dũng An
Xem chi tiết
tth_new
4 tháng 9 2019 lúc 20:33

Cauchy ngược dấu:v

\(A\ge x\left(1-\frac{y}{2}\right)+y\left(1-\frac{z}{2}\right)+z\left(1-\frac{x}{2}\right)\)

\(=x+y+z-\frac{xy+yz+zx}{2}\ge3-\frac{\left(x+y+z\right)^2}{6}=\frac{3}{2}\)

Đẳng thức xảy ra khi x = y = z = 1.

P/s: Ko chắc~

Nguyễn Anh Dũng An
Xem chi tiết
tth_new
1 tháng 9 2019 lúc 14:41

\(P\ge\frac{x+y+z}{2}=\frac{\sqrt{\left(x+y+z\right)^2}}{2}\ge\frac{\sqrt{3\left(xy+yz+zx\right)}}{2}=\frac{\sqrt{3}}{2}\)

\("="\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

Cuồng Song Joong Ki
Xem chi tiết
ミ★kͥ-yͣeͫt★彡
19 tháng 9 2019 lúc 17:43

a) \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2\left(y^2+\frac{1}{x^2}\right)\)

\(+\frac{1}{y^2}\left(y^2+\frac{1}{x^2}\right)=x^2y^2+2+\frac{1}{x^2y^2}\)

\(=2+\left(x^2y^2+\frac{1}{256x^2y^2}\right)+\frac{255}{256x^2y^2}\)

Áp dụng BĐT Cauchy - Schwar cho 2 số không âm, ta được:

\(x^2y^2+\frac{1}{256x^2y^2}\ge2\sqrt{\frac{x^2y^2}{256x^2y^2}}=\frac{1}{8}\)

C/m được BĐT phụ: \(1=\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow16x^2y^2\le1\Leftrightarrow256x^2y^2\le16\Leftrightarrow\frac{255}{256x^2y^2}\ge\frac{255}{16}\)

\(\Rightarrow M\ge2+\frac{1}{8}+\frac{255}{16}=\frac{289}{16}\)

(Dấu "="\(\Leftrightarrow\hept{\begin{cases}x^2y^2=\frac{1}{256x^2y^2}\\x-y=0\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\))

zZz Cool Kid_new zZz
19 tháng 9 2019 lúc 20:51

\(\frac{16}{3x+3y+2z}=\frac{16}{\left(x+y\right)+\left(y+z\right)+\left(z+x\right)+\left(x+y\right)1}\le\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\)

Tương tự \(\frac{16}{3x+2y+3z}\le\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+z}\)

\(\frac{16}{2x+3y+3z}\le\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{y+z}\)

Cộng vế theo vế ta có:

\(16\left(\frac{1}{3x+2y+3z}+\frac{1}{3x+3y+2z}+\frac{1}{2x+3y+3z}\right)\le4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=24\)

\(\Rightarrow\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\left(đpcm\right)\)

P/S:Có dùng S-vác ngược dấu ạ.ý tưởng tách mẫu là từ tth_new - Trang của tth_new - Học toán với OnlineMath nha !

tth_new
19 tháng 9 2019 lúc 20:46

b) \(\frac{1}{3x+3y+2z}=\frac{1}{\left(x+y\right)+\left(y+z\right)+\left(x+z\right)+\left(x+y\right)}\le\frac{1}{16}\left(\frac{2}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)

Tương tự hai bđt còn lại và cộng theo vế thu được: \(VT\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{6}{4}=\frac{3}{2}\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{4}\)

Lê Anh
Xem chi tiết
Anh Mai
Xem chi tiết
Ngô Đức Hùng
Xem chi tiết
alibaba nguyễn
2 tháng 12 2016 lúc 6:26

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

Ngô Đức Hùng
1 tháng 12 2016 lúc 22:57

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

ngonhuminh
2 tháng 12 2016 lúc 6:37

dong y quan diem @aliba

bo xung them. nhieu qua khi tra loi phan cau hoi troi len khoi man hinh =>" ko nhin duoc de bai"

(da khong biet lai con luoi dang cau hoi nua)

Phác Chí Mẫn
Xem chi tiết
Akai Haruma
28 tháng 2 2020 lúc 23:13

Lời giải:

$P=\frac{1}{x^3+y^3}+\frac{1}{xy}=\frac{1}{(x+y)^3-3xy(x+y)}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{1}{xy}$

Áp dụng BĐT Cauchy-Schwarz:

\(P=\frac{1}{1-3xy}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{3}{3xy}\geq \frac{(1+\sqrt{3})^2}{1-3xy+3xy}=(1+\sqrt{3})^2\)

Vậy GTNN của $P$ là $(1+\sqrt{3})^2$

Khách vãng lai đã xóa
Khánh Ngọc
Xem chi tiết
Nguyễn Phước Nhật Tôn
2 tháng 8 2020 lúc 14:59

Mời các bạn Xem lời giải mình thử nhé, chả hiểu sao mình tìm được maxB mà không phải minB, nếu sai chỗ nào nhớ góp ý cho mình với nhé!!!. Cảm ơn...

Có: \(x^3+y^3=\left(x+y\right)\left(x^2+xy+y^2\right)\)), mà \(x+y=1\Leftrightarrow x^3+y^3=x^2+y^2+xy\)

mà \(\left(x+y\right)^2=1^2=1\Rightarrow x^2+xy+y^2=1-xy\)\(\Rightarrow\frac{1}{x^3+y^3}+\frac{1}{xy}=\frac{1}{1-xy}+\frac{1}{xy}=\frac{1}{xy-\left(xy\right)^2}\)

Lại có: \(x^2+y^2\ge2xy\Leftrightarrow x^2+y^2+xy\ge3xy\Leftrightarrow1-xy\ge3xy\)\(\Rightarrow xy\le\frac{1}{4}\)( AD bđt Cosy),  để tính maxB \(\Rightarrow xy-\left(xy\right)^2min\), mà \(max\left(xy\right)=\frac{1}{4}\)\(\Rightarrow maxB=\frac{1}{\frac{1}{4}-\left(\frac{1}{4}\right)^2}=\frac{16}{3}\)

Khách vãng lai đã xóa
☆MĭηɦღAηɦ❄
2 tháng 8 2020 lúc 15:02

@Nguyễn Phước Nhật Tôn HĐT sai rồi bạn ơi @@

Khách vãng lai đã xóa
☆MĭηɦღAηɦ❄
2 tháng 8 2020 lúc 15:10

Ta có : \(x+y=1\Rightarrow\left(x+y\right)^2=1\)

Mà \(4xy\le\left(x+y\right)^2\)\(\Rightarrow4xy\le1\Leftrightarrow xy\le\frac{1}{4}\)

\(B=\frac{1}{x^3+y^3}+\frac{1}{xy}\)

\(=\frac{1}{\left(x+y\right)\left(x^2-xy+y^2\right)}+\frac{1}{xy}\)

\(=\frac{1}{\left(x+y\right)^3-3xy\left(x+y\right)}+\frac{1}{xy}\)

\(=\frac{1}{1-3xy}+\frac{1}{xy}\ge\frac{1}{1-\frac{3}{4}}+\frac{1}{\frac{1}{4}}=\frac{1}{\frac{1}{4}}+\frac{1}{\frac{1}{4}}=8\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=1\\x=y\end{cases}\Leftrightarrow x=y=\frac{1}{2}}\)

Khách vãng lai đã xóa