Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Bao Duc
Xem chi tiết
KAl(SO4)2·12H2O
29 tháng 4 2020 lúc 15:33

a) với a = -2 ta được phương trình:

3.[(-2) - 2].x + 2.(-2).(x - 1) = 4.(-2) + 3

<=> 3.(-4x) - 4.(x - 1) = (-8) + 3

<=> -12x - 4(x - 1) = -5

<=> -12x - 4x + 4 = -5

<=> -16x + 4 = -5

<=> -16x = -5 - 4

<=> -16x = -9

<=> x = 9/16

b) để x = 1, ta có:

3.(a - 2).1 + 2a(1 - 1) = 4a + 3

<=> 3(a - 2) + 0 = 4a + 3

<=> 3a - 6 = 4a + 3

<=> 3a - 6 - 4a = 3

<=> -a - 6 = 3

<=> -a = 3 + 6

<=> a = -9

Khách vãng lai đã xóa
Võ thi cam dung
Xem chi tiết
Phuong Phuong
Xem chi tiết
Angela jolie
Xem chi tiết
Bùi Việt Anh
Xem chi tiết
Trịnh Quỳnh Nhi
9 tháng 2 2018 lúc 19:47

2(x2+x+1)2-7(x-1)2=13(x3-1)

<=> 2(x2+x+1)2-7(x-1)2-13(x3-1)=0

<=>2(x2+x+1)2-14(x3-1)+(x3-1)-7(x-1)2=0

<=> 2(x2+x+1)(x2+x+1-7x+7)+(x-1)(x2+x+1-7x+7)=0

<=> (2x2+2x+2)(x2-6x+8)+(x-1)(x2-6x+8)=0

<=> (x2-6x+8)(2x2+3x+1)=0

<=> (x2-4x-2x+8)(2x2+2x+x+1)=0

<=> [x(x-4)-2(x-4)][2x(x+1)+(x+1)]=0

<=> (x-4)(x-2)(x+1)(2x+1)=0

Đến đây dễ rồi nhé bạn

Nguyễn Hiền Mai
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 6 2019 lúc 17:20

Câu 1: ĐKXĐ: ...

\(\Leftrightarrow4x\left(3x-1\right)+x-1=4x\sqrt{3x+1}\)

\(\Leftrightarrow12x^2-3x-1-4x\sqrt{3x+1}=0\)

\(\Leftrightarrow16x^2-\left(4x^2+4x\sqrt{3x+1}+3x+1\right)=0\)

\(\Leftrightarrow16x^2-\left(2x+\sqrt{3x+1}\right)^2=0\)

\(\Leftrightarrow\left(2x-\sqrt{3x+1}\right)\left(6x+\sqrt{3x+1}\right)=0\)

\(\Leftrightarrow...\)

Câu 2:

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(x^2-4\right)=y^3+2y\\x^2-4=-3y^2\end{matrix}\right.\)

\(\Leftrightarrow x\left(-3y^2\right)=y^3+2y\)

\(\Leftrightarrow y\left(y^2+3xy+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=0\Rightarrow...\\y^2+3xy+2=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow3xy=-y^2-2\Rightarrow x=\frac{-y^2-2}{3y}\)

\(\Rightarrow\left(\frac{y^2+2}{3y}\right)^2-1=3\left(1-y^2\right)\)

\(\Leftrightarrow\left(\frac{y^2-3y+2}{3y}\right)\left(\frac{y^2+3y+2}{3y}\right)=3\left(1-y^2\right)\)

\(\Leftrightarrow\frac{\left(y-1\right)\left(y-2\right)\left(y+1\right)\left(y+2\right)}{9y^2}=3\left(1-y^2\right)\)

\(\Leftrightarrow\frac{\left(y^2-1\right)\left(y^2-4\right)}{9y^2}=3\left(1-y^2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}y^2-1=0\\\frac{y^2-4}{9y^2}=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}y^2-1=0\\28y^2=4\end{matrix}\right.\)

Trần Thanh Phương
28 tháng 6 2019 lúc 15:28

\(3x-1+\frac{x-1}{4x}=\sqrt{3x+1}\)

\(\Leftrightarrow\frac{4x\left(3x-1\right)+x-1}{4x}=\sqrt{3x+1}\)

\(\Leftrightarrow\frac{12x^2-4x+x-1}{4x}=\sqrt{3x+1}\)

\(\Leftrightarrow\frac{12x^2-3x-1}{4x}=\sqrt{3x+1}\)

\(\Leftrightarrow\frac{\left(12x^2-3x-1\right)^2}{16x^2}=3x+1\)

\(\Leftrightarrow\left(12x^2-3x-1\right)^2=16x^2\left(3x+1\right)\)

\(\Leftrightarrow144x^4-120x^3-31x^2+6x+1=0\)

\(\Leftrightarrow144x^4-144x^3+24x^3-24x^2-7x^2+7x-x+1=0\)

\(\Leftrightarrow144x^3\left(x-1\right)+24x^2\left(x-1\right)+7x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(144x^3+24x^2+7x-1\right)=0\)

Tìm được mỗi nghiệm thôi à :v

Nguyễn Thành Trung
Xem chi tiết
Phuong Phuonq
28 tháng 3 2020 lúc 15:32

bn coi lại đề ik ạ

Khách vãng lai đã xóa
Nguyễn Mạnh Nam
28 tháng 3 2020 lúc 15:35

\(\frac{x+1}{9}+1+\frac{x+2}{8}+1=\frac{x+3}{7}+1+\frac{x+4}{6}+1\)

\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{8}=\frac{x+10}{7}+\frac{x+10}{6}\)

\(\Leftrightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)

\(\Rightarrow x=-10\)

Khách vãng lai đã xóa
ngothiphuongthao
Xem chi tiết
Trần Đức Thắng
13 tháng 7 2015 lúc 21:42

Đặt y = x- 2 => x = y + 2 thay vào pt ta có

  \(\left(y+2-1\right)^4+\left(y+2-3\right)^4=2\Rightarrow\left(y+1\right)^4+\left(y-1\right)^4=2\)

=> \(y^4+4y^3+6y^2+4y+1+y^4-4y^3+6y^2-4y+1=2\)

 

=> \(2y^4+12y^2+2=2\Rightarrow2\left(y^4+6y^2+1\right)=2\Rightarrow y^4+6y^2+1=1\Rightarrow y^4+6y^2=0\)

=> \(y^2\left(y^2+6\right)=0\)

=> y ^2= 0  \(\left(x^2\ge0=>x^2+6>0\right)\)

=> y = 0 

(+) y = 0 => x - 2 = 0 => x = 2