\(\frac{2}{1x5x9}\)+\(\frac{2}{5x9x13}\)+\(\frac{2}{9x13x17}\)+...+\(\frac{2}{93x97x101}\)
tính nhanh :
\(\frac{2}{1x5x9}\)+\(\frac{2}{5x9x13}\)+ \(\frac{2}{9x13x17}\)+ ......... + \(\frac{2}{93x97x101}\)
Ta có :
\(\frac{2}{1.5.9}+\frac{2}{5.9.13}+\frac{2}{9.13.17}+...+\frac{2}{93.97.101}\)
\(=\)\(\frac{1}{4}\left(\frac{8}{1.5.9}+\frac{8}{5.9.13}+\frac{8}{9.13.17}+...+\frac{8}{93.97.101}\right)\)
\(=\)\(\frac{1}{4}\left(\frac{1}{1.5}-\frac{1}{5.9}+\frac{1}{5.9}-\frac{1}{9.13}+\frac{1}{9.13}-\frac{1}{13.17}+...+\frac{1}{93.97}-\frac{1}{97.101}\right)\)
\(=\)\(\frac{1}{4}\left(\frac{1}{5}-\frac{1}{97.101}\right)\)
\(=\)\(\frac{1}{4}\left(\frac{1}{5}-\frac{1}{9797}\right)\)
\(=\)\(\frac{1}{4}\left(\frac{9797}{48985}-\frac{5}{48985}\right)\)
\(=\)\(\frac{1}{4}\left(\frac{9792}{48985}\right)\)
\(=\)\(\frac{2448}{48985}\)
Vậy ( tự kết luận nha )
Chúc bạn học tốt ~
\(\frac{2}{1x5x9}\)+\(\frac{2}{5x9x13}\)+\(\frac{2}{9x13x17}\)+...+\(\frac{2}{93x97x101}\)
hình như câu này có công thức đó bạn, là j đó mình cx quên rồi :P
\(\frac{2}{1x5x9}\)+\(\frac{2}{5x9x13}\)+\(\frac{2}{9x13x17}\)+...+\(\frac{2}{93x97x101}\)
\(\frac{2}{1x5x9}\)+\(\frac{2}{5x9x13}\)+\(\frac{2}{9x13x17}\)+...+\(\frac{2}{93x97x101}\)
Gạch bỏ các số đã xuất hiện còn lại 2/1+2/101=204/101
\(\frac{2}{1x5x9}\)+\(\frac{2}{5x9x13}\)+\(\frac{2}{9x13x17}\)+...+\(\frac{2}{93x97x101}\)
cho tam giác ABC .chứng minh
\(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}+sin\frac{B}{2}cos\frac{C}{2}cos\frac{A}{2}+sin\frac{C}{2}cos\frac{A}{2}cos\frac{B}{2}=sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}+tan\frac{A}{2}tan\frac{B}{2}+tan\frac{B}{2}tan\frac{C}{2}+tan\frac{C}{2}tan\frac{A}{2}\)
Tự chứng minh từng cái này rồi suy ra cái đó nhé b.
Ta có: \(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}-sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=sin^2\frac{A}{2}\)
Tương tự ta suy ra:
\(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}+cos\frac{A}{2}sin\frac{B}{2}cos\frac{C}{2}+cos\frac{A}{2}cos\frac{B}{2}sin\frac{C}{2}=sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}+3sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}\left(1\right)\)
Tiếp theo chứng minh:
\(2sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=\frac{cosA+cosB+cosC-1}{2}\left(2\right)\)
\(sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}=\frac{3}{2}-\frac{cosA+cosB+cosC}{2}\left(3\right)\)
\(tan\frac{A}{2}tan\frac{B}{2}+tan\frac{B}{2}tan\frac{C}{2}+tan\frac{C}{2}tan\frac{A}{2}=1\left(4\right)\)
Từ (1), (2), (3), (4) suy được điều phải chứng minh
trinh le na
cho bạn 4 năm nữa cũng chưa hiểu đâu
\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+..+\frac{1}{100^2}=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
Có \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\) \(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)....v........v............ \(\frac{1}{50^2}< \frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)
Cộng lại \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=2-\frac{1}{50}\)
\(\Rightarrow VT< \frac{1}{2^2}\left(2-\frac{1}{50}\right)=\frac{1}{2}-\frac{1}{2^2.50}< \frac{1}{2}\left(Đpcm\right)\)
ủa toán lớp mấy chứ ko phải lớp 1
uk ko phải toán lớp 1
\(\frac{\frac{-2}{3}+\frac{3}{4}-2}{\frac{2}{3}-\frac{3}{4}+2}-\frac{\frac{-2}{3}-\frac{3}{4}-2}{\frac{2}{3}+\frac{2}{4}+2}\)
\(=\frac{-1\left(\frac{2}{3}-\frac{3}{4}+2\right)}{\frac{2}{3}-\frac{3}{4}+2}-\frac{-1\left(\frac{2}{3}+\frac{3}{4}+2\right)}{\frac{2}{3}+\frac{3}{4}+2}\)
\(=-1-\left(-1\right)\)
\(=-1+1\)
\(=0\)
\(=\frac{-\left(\frac{2}{3}+\frac{3}{4}-2\right)}{\frac{2}{3}+\frac{3}{4}-2}-\frac{-\left(\frac{2}{3}+\frac{3}{4}+2\right)}{\frac{2}{3}+\frac{3}{4}+2}\)
\(=\left(-1\right)-\left(-1\right)\)
\(=0\)
Tính giá trị của :
D=\(\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}\right)x\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)-\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)x\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}\right)\)
Đặt \(a=\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{2019^2}\)
\(b=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\)
Khi đó : \(D=ab-\left(b+1\right)\left(a-1\right)\)
\(\Rightarrow D=ab-\left(ab+a-b-1\right)\)
\(\Rightarrow D=b-a+1=\frac{1}{2020^2}-1+1=\frac{1}{2020^2}\)