Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
luong hoang nhat truong
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 1 2022 lúc 21:30

luong hoang nhat truong
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 1 2022 lúc 21:30

luong hoang nhat truong
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 1 2022 lúc 21:30

luong hoang nhat truong
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 1 2022 lúc 21:31

 

luong hoang nhat truong
Xem chi tiết
Phan Huy Bằng
8 tháng 1 2022 lúc 12:52

Phan Huy Bằng
8 tháng 1 2022 lúc 12:52

luong hoang nhat truong
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 1 2022 lúc 20:49

a Xét ΔHDE và ΔHGE có 

HD=HG

HE chung

DE=GE

Do đó: ΔHDE=ΔHGE

b: Xét ΔEDI và ΔEGI có 

ED=EG

\(\widehat{DEI}=\widehat{GEI}\)

EI chung

Do đó: ΔEDI=ΔEGI

Suy ra: \(\widehat{EDI}=\widehat{EGI}=90^0\)

hay IG\(\perp\)GE

c: Xét ΔHDI vuông tại H và ΔHGI vuông tại H có

IH chung

ID=IG

Do đó: ΔHDI=ΔHGI

phung tuan anh phung tua...
10 tháng 1 2022 lúc 20:51
Huong Nguyen
Xem chi tiết
Nguyễn Hoàng Minh
28 tháng 12 2021 lúc 20:20

undefined

undefined

Tiến Dũng Đặng
Xem chi tiết
Akai Haruma
24 tháng 12 2021 lúc 23:42

Lời giải:

a. Xét tam giác $HDE$ và $HGE$ có:
$EH$ chung

$DE=GE$ (gt)

$HD=HG$ (do $H$ là trung điểm $DG$)

$\Rightarrow \triangle HDE=\triangle HGE$ (c.c.c)

b. Từ tam giác bằng nhau phần a suy ra $\widehat{E_1}=\widehat{E_2}$

Xét tam giác $EDI$ và $EGI$ có:

$\widehat{E_1}=\widehat{E_2}$ (cmt)

$ED=EG$ (gt)

$EI$ chung

$\Rightarrow \triangle EDI=\triangle EGI$ (c.g.c)

$\Rightarrow \widehat{EGI}=\widehat{EDI}=90^0$

$\Rightarrow IG\perp GE$ (đpcm)

Akai Haruma
24 tháng 12 2021 lúc 23:43

Hình vẽ:

My Nguyen
Xem chi tiết
My Nguyen
30 tháng 6 2020 lúc 10:26
https://i.imgur.com/we3lErZ.png