cho tam giác ABC vuông cân tại A, trung tuyến AM, gọi D là điểm bất kỳ thuộc cạnh BC, kẻ BH,CK vuông góc với AD. cmr tam giác AMH bằng tam giác CKM
cho tam giác ABC vuông cân tại A, kẻ trung tuyến AM , lấy điểm D bất kì trên BC , kẻ BH và CK vuông góc với AD .Chứng minh :tam giác MHK VUÔNG CÂN
Cho tam giác ABC vuông cân tại A. Gọi E là trung điểm của BC. M là điểm bất kì thuộc cạnh BC (M khác E). Kẻ BH vuông góc với AM tại H và CK vuông góc với AM tại K.
a) Chứng minh △KAC = △HBA
b) Chứng minh AE vuông góc với BC.
c) Tam giác KEH là tam giác gì? Vì sao?
b: Ta có: ΔABC cân tại A
mà AE là đường trung tuyến
nên AE là đường cao
Cho tam giác ABC cân tại A. Trên tia đối với tia BC lấy điểm M, trên tia đối của tia CB lấy N sao cho BM=CN
a/Cmr: tam giác AMN là tam giác cân
b/ Kẻ BH vuông góc với AM( H thuộc AM), kẻ CK vuông góc với AN (K thuộc AN). Chứng minh rằng: BH=CK
c/Cmr: HK//BC
d/ Gọi O là giao điểm của BH và CK. CMR: tam giác BOC cân
e/ Gọi D là trung điểm của BC. cmr: 3 điểm A,D,O thẳng hàng
tam giác ABC cân tại A suy ra AB=AC và góc ABC = góc ACB
ta có \(\widehat{ABC}+\widehat{ABM}=180^o\\ \widehat{ACB}+\widehat{ACN}=180^o\)mà \(\widehat{ABC}=\widehat{ACB}\)\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)
dễ thấy tam giác \(ABM=\Delta ACN\left(c.g.c\right)\)
suy ra AM = AN ( 2 cạnh tương ứng )
tam giác AMN có AM = AN suy ra tam giác AMN là tam giác cân
b) tam giác ABm = tam giác ACN suy ra góc MAB = góc NAC ( 2 góc tương ứng )
dễ thấy tam giác HBA = tam giác KCA ( cạnh huyền - góc nhọn )
suy ra BA = Ck ( 2 cạnh tương ứng )
c) \(\Delta AHK\)có AH=AK suy ra \(\Delta AHk\) là tam giác cân
\(\Delta AHK\)và \(\Delta AMN\) có chung đỉnh
mà 2 tam giác này là 2 tam giác cân suy ra \(\widehat{AHK}=\widehat{AKH}=\widehat{AMN}=\widehat{ANM}\\ hay\widehat{AHK}=\widehat{AMN}\)
mà 2 góc này ở vị trí đồng vị bằng nhau suy ra HK//MN
d) kéo dài HB và CK cắt nhau tại O
nối AO
xét \(\Delta⊥AHO\)và \(\Delta⊥AKO\)có
AO là cạnh huyền chung
AH = AK
do đó \(\Delta AHO=\Delta AKO\) ( cạnh huyền - cạnh góc vuông )
e) xét tam giác \(BAD\)và \(\Delta CAD\)có
BA = CA ( tam giác ABC cân tại A )
DA = DC (gt)
AD là canh chung
do đó \(\Delta BAD=\Delta CAD\left(c.c.c\right)\)
phù phù mệt quá còn mấy cái cuối gửi bn sau mk đi ngủ đã
tiếp nhé
suy ra góc BAD = góc CAD ( 2 góc tương ứng )
vì tia AD nằm giữa 2 tia AB và AC nên AD là phân giác góc BAC (1)
ta có BH = CK ( cmt)
và HO = KO (cmt)
suy ra HO-HB=OK-CK ( vì B nằm giữa H và O , C nằm giữa O và K )
hay BO = OC
xét \(\Delta BAO\)và \(\Delta CAO\)có \(\hept{\begin{cases}AOchung\\BO=OC\left(cmt\right)\\BA=CA\left(gt\right)\end{cases}}\)
do đó \(\Delta BAO=\Delta CAO\left(c.c.c\right)\)
suy ra góc BAO = góc CAO ( 2 góc tương ứng )
vì tia AO nằm giữa 2 tia AB và AC suy ra AO là phân giác góc BAC (2)
từ (1) và (2) suy ra A;D;O thẳng hàng
Cho tam giác ABC vuông cân tại B, có trung tuyến BM. Gọi D là một điểm bất kì thuộc cạnh AC. Kẻ AH, CK vuông góc với BD (H, K thuộc đường thẳng BD). Chứng minh : a) BH = CK. b) Tam giác MHK vuông cân.
xin lỗi tôi ko biết
ai mik lại
ai duyệt mình duyệt lại
ai đúng mình dừng lại
chon a,b,c
cho tam giác ABC vuông cân tại A, có trung tuyến BM. Gọi D là điểm bất kì thuộc cạnh AC. kẻ AH, CK vuông góc với BD( H,K thuộc BD). Chứng minh:
a) BH=CK
b)tam giác MHK vuông cân
Hình hơi lệch mọi người thông cảm
cho tam giác ABC vuông cân tại A , trung tuyến AM và một điểm D trên cạnh BC (D khác M) . Hạ BH và CK vuông góc với đường thẳng AD (H;K thuộc AD) . Gọi giao điểm của BH và CK với đường thẳng AM lần lượt là E và F
a)Tính góc MAB
b) Tam giác ADH = tam giác CKA
c)Tam giác DEF vuông cân
Cho tam giác ABC vuông cân tại A có I là đường trung tuyến. Lấy điểm D thuộc cạnh BC (C khác M). Kẻ BH, CK vuông góc với AD. Chứng minh:
a) AH=CK
b) Tam giác MHK vuông cân
a. Ta có: góc ABH = góc KAC (cùng phụ góc BAH)
Xét tam giác BAH và tam giác ACK có:
AB=AC
góc ABH = góc CAK
góc BHA = góc AKC (=90độ)
=> tam giác BAH = tam giác ACK (cạnh huyền - góc nhọn)
=> AH=CK
1. Cho tam giác ABC cân tại A. Trên tia đốicủa tia BC và CB lấy theo thứ tự điểm D và E sao cho BD = CE.
a) CMR: tam giác ADE cân.
b) Gọi M là trung điểm của BC. CMR: AM là tia phân giác của góc DAE và AM vuông góc với DE.
c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE. CMR: BH = CK.
d_CMR: HK// BC
e) Cho HD cắt Ck ở N. CMR: A, M, R thẳng hàng.
2. Cho tam giác ABC vuông cân tại A. d là dduowgnf thẳng bất ì qua A (d không cắt đoạn BC). Từ B và C kẻ BD và CE cùng vuông góc với d.
a) CMR: BD // CE.
b) CMR: tam giác ADB = tam giác CEA.
c) CMR: bd + CE = DE.
d) Gọi M là trung điểm của BC. CMR: tam giác DAM = tam gaics ECM và tam giác DME vuông cân.
CO TAM GIAC ABC CAN TAI A
=>AB=AC( DN TAM GIÁC CÂN)
SUY RA GÓC ABC = GÓC ACB( DN TAM GIÁC CÂN)
CÓ GÓC ABC VÀ GÓC ABD LÀ 2 GÓC KỀ BÙ
SUY RA GÓC ABD+ GÓC ABC = 180 ĐỘ
CÓ GÓC ACB VÀ GÓC ACE LÀ 2 GÓC KỀ BÙ
SUY RA GÓC ACB + GÓC ACE = 180 ĐỘ
MÀ GÓC ABC = GÓC ACB( CMT)
SUY RA GÓC ABD+ GÓC ABC = GÓC ACB + ACE( =180 ĐỘ)
=> GÓC ABD= GÓC ACE
XÉT TAM GIÁC ADB VÀ TAM GIÁC AEC CÓ:
AB=AC( CMT)
GÓC ABD = GỐC ACE ( GMT)
DB=EC( GT)
=> TAM GIÁC ADB = TAM GIÁC AEC( C-G-C)
=>AD=AE( 2 CẠNH TƯƠNG ỨNG)
=> TAM GIAC ADE CAN TAI A( DN TAM GIAC CAN)
b)CÓ TAM GIÁC ADE CÂN TẠI A( CMT)
=>GÓC D = GÓC E( ĐN TAM GIÁC CÂN)
CÓ M LÀ TRUNG ĐIỂM CỦA BC=>BM=CM
CO ME = MC+CE
MD=MB+BD
MA CE=BD
MB=MC
=>MD=ME
XÉT TAM GIÁC AMD VÀ TAM GIÁC AME CÓ:
AD= AE(CM CÂU a)
GÓC D=GÓC E(CMT)
MD=ME( CMT)
SUY RA TAM GIÁC AMD= TAM GIÁC AME( C-G-C)
=>GÓC ĐAM = GÓC EAM( 2 GÓC TƯƠNG ỨNG)
SUY RA AM LÀ TIA PHÂN GIÁC CỦA GÓC DAE
CÓ TAM GIÁC AMD = TAM GIÁC AME
SUY RA GÓC AMD = GÓC AME( 2 GÓC TƯƠNG ỨNG)
MÀ 2 GÓC NÀY LÀ 2 GÓC KỀ BÙ
SUY RA AMD+AME = 180 ĐỘ
CÓ GÓC AMD = GÓC AME = 180 ĐỘ :2 = 90 ĐỘ
SUY RA AM VUONG GOC VS DE
CHO BN 2 CAU TRC LAM NAY
NHO K CHO MINH NHA
CO TAM GIAC ADM = TAM GIAC ACE( CM O CAU A)
SUY RA GÓC DAB = GÓC EAC( 2 GÓC TƯƠNG ỨNG)
XÉT TAM GIC AHB VUÔNG TẠI H VÀ TAM GIÁC AKC VUÔNG TẠI K CÓ:
AB = AC ( CM Ở CÂU a)
GÓC DAB = GÓC EAC ( CMT)
=> TAM GIÁC AHB = TAM GIÁC AKC( CH-GN)
=> BH = CK( 2 CẠNH TƯƠNG ỨNG)
d)KHI NÀO MÌNH NGHĨ XONG MÌNH SẼ NS CHO CẬU
2
d) CÓ TAM GIÁC ADB = TAM GIÁC AEC( CM Ở CÂU a)
=> GÓC DAB = GÓC EAC( 2 GÓC TƯƠNG ỨNG)
XÉT TAM GIÁC AHB VUÔNG TẠI H VÀ TAM GIÁC AKC VUÔNG TẠI K CÓ:
GÓC DAB = GÓC EAC( CMT)
AB=AC( CM Ở CÂU a)
=> TAM GIÁC AHB = TAM GIÁC AKC( CH-GN)
=>BH=CK( 2 CẠNH TƯƠNG ỨNG)
ế) MÌNH QUÊN CÁCH CHỨNG MINH 3 ĐIỂM THẲNG HÀNG OY XIN LỖI NHA( CÁI ĐÓ M HỌC Ở ĐẦU NĂM LỚP 7 MÀ)
Câu 1: Cho tam giác ABC cân tại A. Kẻ qua B tia Bx vuông góc với AB, kẻ qua C tia Cy vuông góc với AC. Gọi I là giao điểm của Bx và Cy. CMR:
a, Tam giác ABI = tam giác ACI
b, AI là trung trực của BC
Câu 2: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N, sao cho BM=CN
a, CM tam giác AMN cân
b, Kẻ BH vuông góc với AM, CK vuông góc với AN. CMR BH = CK
c, Gọi O là giao điểm của BH và CK. CM tam giác OBC cân
d, Gọi D là trung điểm của BC. CMR 3 điểm A,D,O thẳng hàng
Câu 3: Cho tam giác ABC cân tại A, M là trung điểm của BC
a, CM tam giác ABM = tam giác ACM
b, CM AM vuông góc với BC
c, Trên cạnh AB lấy điểm E, trên cạnh CA lấy điểm F, sao cho BE = CF. CM tam giác EBC = tam giác FCB
d, CM EF//BC
@Hoàng Thị Tuyết Nhung bạn làm giúp mình câu 1 thôi nha