cho tam giác ABC vuông cân tại A, kẻ trung tuyến AM , lấy điểm D bất kì trên BC , kẻ BH và CK vuông góc với AD .Chứng minh :tam giác MHK VUÔNG CÂN
Cho tam giác ABC cân tại A. Trên tia đối với tia BC lấy điểm M, trên tia đối của tia CB lấy N sao cho BM=CN
a/Cmr: tam giác AMN là tam giác cân
b/ Kẻ BH vuông góc với AM( H thuộc AM), kẻ CK vuông góc với AN (K thuộc AN). Chứng minh rằng: BH=CK
c/Cmr: HK//BC
d/ Gọi O là giao điểm của BH và CK. CMR: tam giác BOC cân
e/ Gọi D là trung điểm của BC. cmr: 3 điểm A,D,O thẳng hàng
Cho tam giác ABC vuông cân tại B, có trung tuyến BM. Gọi D là một điểm bất kì thuộc cạnh AC. Kẻ AH, CK vuông góc với BD (H, K thuộc đường thẳng BD). Chứng minh : a) BH = CK. b) Tam giác MHK vuông cân.
cho tam giác ABC vuông cân tại A, có trung tuyến BM. Gọi D là điểm bất kì thuộc cạnh AC. kẻ AH, CK vuông góc với BD( H,K thuộc BD). Chứng minh:
a) BH=CK
b)tam giác MHK vuông cân
cho tam giác ABC vuông cân tại A , trung tuyến AM và một điểm D trên cạnh BC (D khác M) . Hạ BH và CK vuông góc với đường thẳng AD (H;K thuộc AD) . Gọi giao điểm của BH và CK với đường thẳng AM lần lượt là E và F
a)Tính góc MAB
b) Tam giác ADH = tam giác CKA
c)Tam giác DEF vuông cân
Cho tam giác ABC vuông cân tại A có I là đường trung tuyến. Lấy điểm D thuộc cạnh BC (C khác M). Kẻ BH, CK vuông góc với AD. Chứng minh:
a) AH=CK
b) Tam giác MHK vuông cân
1. Cho tam giác ABC cân tại A. Trên tia đốicủa tia BC và CB lấy theo thứ tự điểm D và E sao cho BD = CE.
a) CMR: tam giác ADE cân.
b) Gọi M là trung điểm của BC. CMR: AM là tia phân giác của góc DAE và AM vuông góc với DE.
c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE. CMR: BH = CK.
d_CMR: HK// BC
e) Cho HD cắt Ck ở N. CMR: A, M, R thẳng hàng.
2. Cho tam giác ABC vuông cân tại A. d là dduowgnf thẳng bất ì qua A (d không cắt đoạn BC). Từ B và C kẻ BD và CE cùng vuông góc với d.
a) CMR: BD // CE.
b) CMR: tam giác ADB = tam giác CEA.
c) CMR: bd + CE = DE.
d) Gọi M là trung điểm của BC. CMR: tam giác DAM = tam gaics ECM và tam giác DME vuông cân.
Câu 1: Cho tam giác ABC cân tại A. Kẻ qua B tia Bx vuông góc với AB, kẻ qua C tia Cy vuông góc với AC. Gọi I là giao điểm của Bx và Cy. CMR:
a, Tam giác ABI = tam giác ACI
b, AI là trung trực của BC
Câu 2: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N, sao cho BM=CN
a, CM tam giác AMN cân
b, Kẻ BH vuông góc với AM, CK vuông góc với AN. CMR BH = CK
c, Gọi O là giao điểm của BH và CK. CM tam giác OBC cân
d, Gọi D là trung điểm của BC. CMR 3 điểm A,D,O thẳng hàng
Câu 3: Cho tam giác ABC cân tại A, M là trung điểm của BC
a, CM tam giác ABM = tam giác ACM
b, CM AM vuông góc với BC
c, Trên cạnh AB lấy điểm E, trên cạnh CA lấy điểm F, sao cho BE = CF. CM tam giác EBC = tam giác FCB
d, CM EF//BC
Cho tam giác ABC cân tại A M lad trung điểm BC 'kẻ BH vuông góc AM tại H CK vuông góc AM tại K A/ cm tam giácBHM = tam giác CKM B/ ssBH+BKvoiws BC