cho tam giác cân ABC: BA=Bc=a ; AC=BC
Đường phân giác của góc A cắt BC tại M
ĐƯờng phân giác của Góc C cắt BA tại N
a, Chứng minh MN song song AC
b, Tính MN theo a và b
Cho tam giác ABC cân tại C khi đó
Cho Tam giác ABC cân tại C khi đó
A. AB = AC.
B. AC = BC
C. BC = BA.
D. AB = AC = BC
Cho tam giác ABC cân tại A vẽ D đối xứng C qua A tính diện tích tam giác ABC biết BA=5 và BC=6
dễ dàng chứng minh được BCD là tam giác vuông tại B
từ đó tính được BD
Có : SBCD = 1/2.BD.BC= 1/2.8.6 = 24
có : BA là đường trung tuyến của △BCD.
=> SABC = 1/2. SBCD =1/2. 24 = 12
Bài 5: Cho tam giác ABC vuông cân tại A. Trên tia đối của tia BA lấy điểm D sao cho DB = BC. Tính số đo các góc của tam giác ACD
Bài6:TamgiácABCcântạiBcóBˆ =100 đôn.LấycácđiểmDvàEtrêncạnhAC sao cho AD = BA, CE = CB. Tính số đo góc DBE?
Bài 7: Cho tam giác ABC cân tại A. Vẽ BH vuông góc với AC tại H. Chứng minh rằng góc BAC có số đo gấp đôi số đo góc CBH.
Bài 8: Cho tam giác ABC cân tại A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Gọi I là giao điểm của BE và CD.
a) Chứng minh tam giác IBC và tam giác IDE là các tam giác cân.
b) Chứng minh BC // DE.
c) Gọi M là trung điểm của BC. Chứng minh ba điểm A, M, I thẳng hàng.
Bài 5:
Tgiac ABC vuông cân tại A => góc CBA = 45 độ
Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB
Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC
=> góc D = 45/2 = 22,5 độ
và góc ACD = 22,5 + 45 = 67,5 độ
Vậy số đo các góc của tgiac ACD là ...
Bài 6:
Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ
Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ
cmtt với tgiac CBE => góc DEB = 70 độ
=> góc DBE = 180-70-70 = 40 độ
Bài 7:
Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)
Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C
=> đpcm
Bài 8: mai làm hihi
bài này dễ sao không biết
Bài 8 :
Tự vẽ hình nhé ?
a) Vì ∆ABC cân tại A (GT)
=> ∠ABC = ∠ACB (ĐN)
Mà ∠ABC + ∠DBC = 180o (2 góc kề bù)
∠ACB + ∠ECB = 180o (2 góc kề bù)
=> ∠DBC = ∠ECB (1)
Xét ∆BCD và ∆CBE có :
BD = CE (GT)
∠DBC = ∠ECB (Theo (1))
BC chung
=> ∆BCD = ∆CBE (c.g.c) (2)
=> ∠BCD = ∠CBE (2 góc tương ứng)
Hay ∠BCI = ∠CBI
Xét ∆IBC có : ∠BCI = ∠CBI (cmt)
=> ∆IBC cân tại I (định lý)
=> IB = IC (ĐN) (3)
Từ (2) => DC = EB (2 cạnh tương ứng)
Mà ID + IC = DC, IE + IB = EB
=> ID = IE
Xét ∆IDE có : ID = IE (cmt)
=> ∆IDE cân tại I (ĐN)
b) Ta có : AB + BD = AD
Mà AC + CE = AE
AB = AC (GT)
BD = CE (GT)
=> AD = AE
Xét ∆ADE có : AD = AE (cmt)
=> ∆ADE cân tại A (ĐN)
=> ∠ADE = \(\frac{180^o-\widehat{DAE}}{2}\)(4)
Vì ∆ABC cân tại A (GT)
=> ∠ABC = \(\frac{180^o-\widehat{BAC}}{2}\)(5)
Từ (4), (5) => ∠ADE = ∠ABC, mà 2 góc này ở vị trí đồng vị
=> BC // DE (DHNB)
c) Xét ∆ABM và ∆ACM có :
AM chung
AB = AC (GT)
MB = MC (do M là trung điểm của BC)
=> ∆ABM = ∆ACM (c.c.c)
=> ∠AMB = ∠AMC (2 góc tương ứng)
Mà ∠AMB + ∠AMC = 180o (2 góc kề bù)
=> ∠AMB = ∠AMC = 180o : 2 = 90o
Sau đó chứng minh ∆BIM = ∆CIM theo c.c.c bằng 3 yếu tố MI chung, MB = MC, IB = IC (Theo (3))
Rồi => ∠IMB = ∠IMC (tương ứng)
Mà ∠IMB + ∠IMC = 180o (kề bù)
=> ..... (làm như phần trên)
Ta có : ∠AMB + ∠IMB = ∠AMI
Mà ∠AMB = 90o (cmt)
∠IMB = 90o (cmt)
=> 90o + 90o = ∠AMI
=> ∠AMI = 180o
=> A, M, I thẳng hàng (đpcm)
Vậy .....
1. Cho tam giác ABC vuông tại A có AC=1cm, BC=2cm. Kẻ đường trung tuyến BK và đường cao AH
a) Tính AB
b) Tính BK và AH
2. Cho tam giác ABC vuông cân tại A (ˆBAC=90BAC^=90 độ, BD=BA). Ở phía ngoài tam giác ABC, dựng tam giác DAB vuông cân tại D (ˆDAB=90DAB^=90 độ, BD=BA). Gọi E là một điểm tùy ý trên DA. Đường thẳng đi qua E và vuông góc với BE cắt AC ở F
a) Gọi K là giao điểm của BD và AC. CMR tam giác KAB vuông cân tại A và DA là đường trung trực của đoạn KB
b) CMR tam giác KEA= tam giác BEA
c) CMR tam giác KEF cân tại E. Từ đó suy ra BE= EF
cho tam giác abc có ba<bc và góc b = 60 độ
a) trên tia bc lấy m sao cho mb=ba . Chứng minh: tam giác abm đều
b) tia phân giác góc b cắt ac tại d. Chứng minh: tam giác bad = tam giác bmd
c)tia md cắt ba tại h, Chứng Minh : tam giác dhc cân
Cho tam giác ABC cân tại A ( AB> BC )/. TRên cạnh AC lấy điềm D sao cho BD = DC. cm:
a, góc ABC = góc BDC ?
b, Trên tia đối cùa tia BA lay điềm E : BA = AD . Cm : tam giac DAB = tam giac BEC
c, Cm : tam giác ACE cân , TAm giac CBD cân
1. Cho tam giác ABC cân tại A. kẻ AH vuông góc với BC (H thuộc BC)
a) Cm: HB=HC
b) Cm: AH là tia phân giác của góc BAC
c) Kẻ Bx vuông góc với BA, Cy vuông góc với CA. gọi K là giao điểm của hai tia Bx và Cy. Cm tam giác KBC cân tại K
2. Cho tam giác ABC cân tại A. Tia phân giác của góc A cắt BC tại H
a) Cm: tam giác AHB= tam giác AHC
b) Cm: AH vuông góc với BC
c) Cho AB=13cm, BC=10cm. Tính AC
Giúp mik với, mik cảm ơn!
Bài 2:
a: Xét ΔAHB và ΔAHC có
AB=AC
\(\widehat{BAH}=\widehat{CAH}\)
AH chung
DO đó; ΔAHB=ΔAHC
b: Ta có: ΔABC cân tại A
mà AH là đường phân giác
nên AH là đường cao
c: BC=10cm nên BH=CH=5cm
=>AC=13cm
Bài 1 :Cho tam giác ABC cân tại A, góc A= 20 độ. Trên cạnh AB lấy điểm D sao cho AD=BC. CMR:góc DCA= 1/2 góc A
Bài 2 :Cho tam giác ABC vuông cân tại A, góc C=15 độ. Trên tia BA lấy điểm O
sao cho BO=2AC.CMR : tam giác OBC cân.
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC (H thuộc BC) a) Chứng minh: Tam giác ABH= tam giác ACH b) Lấy điểm D trên tia đối của tia BC sao cho BD=BH, lấy E trên tia đối của tia BA sao cho BE=BA. Chứng minh: DE//AH
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Xét tứ giác AHED có
B là trung điểm chung của AE và HD
=>AHED là hình bình hành
=>DE//AH
Cho tam giác ABC cân tại A vẽ D đối xứng C qua A tính diện tích tam giác BCD biết BA=5 và BC=6
Sorri lỡ vẽ hình bự quá :D
\(\Delta ABC\) cân tại A => AB = AC (1)
D đối xứng với C qua A => A là trung điểm CD => AC = AD => AC=\(\dfrac{CD}{2}\)(2)
Từ (1) và (2) => \(AB=\dfrac{CD}{2}\)
Xét \(\Delta BCD\) có A là tđ CD => AB là trung tuyến
Mà \(AB=\dfrac{CD}{2}\) nên \(\Delta BCD\) vuông tại B
Độ dài cạnh CD: CD = 2.AB = 2.5 = 10 (cm)
Bây giờ áp dụng định lý Pytago để tính BD
Áp dụng đlý Pytago vào \(\Delta BCD\) vuông tại B ta có:
\(BC^2+BD^2=CD^2\\ =>6^2+BD^2=10^2\\ =>36+BD^2=100\\ =>BD^2=100-36=64\\ =>BD=\sqrt{64}=8\left(cm\right)\)
Diện tích \(\Delta BCD\): \(\dfrac{BD.BC}{2}=\dfrac{8.6}{2}=\dfrac{48}{2}=24\left(cm^2\right)\)
Vì đề k cho đơn vị nên mình để cm nha