chứng minh
1/1x6+1/6x11+...+1/(5n+1)(5n-6)=3/11
1/1x2x3+1/2x3x4+...1/18x19x20<1/4
1/1x6+1/6x11+...+1/(5n+1)x(5n+6)=n+1/5n+6
chứng minh công thức
Chứng minh với n thuộc N có:
1 / 1x6 + 1/ 6x11 + ... + 1/ ( 5n + 1 ) x ( 5n + 6 ) = n + 1 / 5n + 6
CMR:1/1x6+1/6x11+1/11x16+....+1/(5n+1)(5n+6)=n+1/5n+6
Gọi A = 1/1.6 + 1/6.11 +...+ 1/(5n+1)(5n+6)
5A = 5/1.6 + 5/6.11 + ... + 5/(5n+1)(5n+6)
=1 - 1/6 + 1/6 - 1/11 + ... + 1/5n+1 - 1/5n+6
=1 - 1/5n+6 =5n+6/5n+6 - 1/5n+6=5n+5 /5n+6
A=1/1x2x3+1/2x3x4+1/3x4x5+...+1/18x19x20<1/4
Ta có:
\(A=\frac{1}{1\text{x}2\text{x}3}+\frac{1}{2\text{x}3\text{x}4}+\frac{1}{3\text{x}4\text{x}5}+...+\frac{1}{18\text{x}19\text{x}20}< \frac{1}{4}\)
\(A=1-\frac{1}{2}-\frac{1}{3}+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{20}< \frac{1}{4}\)
\(A=1+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+...+\frac{1}{20}< \frac{1}{4}\)
\(A=1+\frac{1}{20}< \frac{1}{4}\)
\(A=\frac{19}{20}< \frac{1}{4}\)
\(A=\frac{19}{20}< \frac{5}{20}\)
\(A>\frac{1}{4}\)
3x - (1/1x2+1/2x3+.....+1/99x100)=1/1x2x3+1/2x3x4+......+1/18x19x20
\(\Leftrightarrow3x-\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\right)=\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\right)\)
\(\Leftrightarrow3x-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)=\frac{1}{2}\cdot\left(\frac{1}{1.2}-\frac{1}{2.3}+....+\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(\Leftrightarrow3x-\left(1-\frac{1}{100}\right)=\frac{1}{2}\cdot\left(\frac{1}{1.2}-\frac{1}{19.20}\right)\)
\(\Leftrightarrow3x-\frac{99}{100}=\frac{1}{2}\cdot\frac{189}{380}\)
\(\Leftrightarrow3x-\frac{99}{100}=\frac{189}{760}\)
\(\Leftrightarrow3x=\frac{189}{760}+\frac{99}{100}=\frac{4707}{3800}\)
\(\Leftrightarrow x=\frac{1569}{3800}\)
\(\text{Vậy }x=\frac{1569}{3800}\)
Học sinh gương mẫu của lớp thầy Phú là đây
cho A=1/1x2x3+1/2x3x4+...+1/18x19x20. CMR:A<1/4
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{18.19.20}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{19.20}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{380}\right)=\frac{1}{4}-\frac{1}{760}< \frac{1}{4}\)(ĐPCM)
tính nhanh : 1/1x2x3 + 1/2x3x4 + 1/3x4x5 + ... + 1/18x19x20 ( giúp mình với đg cần gấp)
\(=\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{18\cdot19}-\dfrac{1}{19\cdot20}\)
=1/2-1/380
=190/380-1/380
=189/380
tính nhanh : 1/1x2x3 + 1/2x3x4 + 1/3x4x5 + ... + 1/18x19x20 ( giúp mình với đg cần gấp)
Gọi biểu thức trên là S. Ta có :
\(S=\dfrac{1}{1\times2\times3}+\dfrac{1}{2\times3\times4}+\dfrac{1}{3\times4\times5}+...+\dfrac{1}{18\times19\times20}\)
\(=\dfrac{1}{2}\times\left(\dfrac{2}{1\times2\times3}+\dfrac{2}{2\times3\times4}+\dfrac{2}{3\times4\times5}+...+\dfrac{2}{18\times19\times20}\right)\)
Trước tiên, ta áp dụng : \(\dfrac{2}{a\left(a+1\right)\left(a+2\right)}=\dfrac{1}{a\left(a+1\right)}-\dfrac{1}{\left(a+1\right)\left(a+2\right)}\)
Ta sẽ có :
\(S=\dfrac{1}{2}\times\left(\dfrac{1}{1\times2}-\dfrac{1}{2\times3}+\dfrac{1}{2\times3}-\dfrac{1}{3\times4}+\dfrac{1}{3\times4}-\dfrac{1}{4\times5}+...+\dfrac{1}{18\times19}-\dfrac{1}{19\times20}\right)\)
\(=\dfrac{1}{2}\times\left(\dfrac{1}{1\times2}-\dfrac{1}{19\times20}\right)\)
\(=\dfrac{1}{2}\times\dfrac{1}{1\times2}-\dfrac{1}{2}\times\dfrac{1}{19\times20}\)
\(=\dfrac{1}{4}-\dfrac{1}{760}=\dfrac{189}{760}\)
`=1/2(1/1×2 - 1/2×3 + 1/2×3 - 1/3×4 + 1/3×4 - 1/4×5 + ... + 1/18×19 - 1/19×20)`
`=1/2(1/2 - 1/19×20)`
`=1/2×189/380 `
`=189/760`
a,(1/5-1/7):(30%-20%);b,(3-2 và1/2)x(1/2-1/3)
c,1/2x4+1/4x6+...+1/18x20;d,1/1+2+1/1+2+3+...+1/1+2+3+...+2018
h,1/1.6+2/6.11+2/11.16+2/16.21;g,1/1x2x3+1/2x3x4+...+1/18x19x20
C=1/(2x4)+1/(4x6)+...+1/(18x20)
2C=2/(2x4)+2/(4x6)+...+2/(18x20)
2C=1/2-1/4+1/4-1/6+....-1/20
2C= 1/2- 1/20
2C= 9/20
C= 9/20 x 1/2
C= 9/40
- Quên k auto súc vặc