tìm số nguyên x,y
a. 5(x+y) +2 = 3xy
b. 2( x+y) = 5xy
c. 3x+7= y(x-3)
d. xy+ 3x- y=6
e. 1/x + 1/y= 1/5
tìm số nguyên x,y
a. 2( x+y) = 5xy
b. 3x+7 = y( x-3)
c. xy + 3x -y =6
a) 3x(x+1)-x(3x+2)
b) 2x(x2-5x+6)+(x-1)(x+3)
c) (x2-xy+y2)-(x2+2xy+y2)
d) (2/5xy+x-y)-(3x+4y)-2/5xy
e) 2xy(x2-4xy+4y2)
f) (x+y)(xy+5)
g) (x3-2x2-x+2):(x-1)
h) (2x2+3x-2):(2x-1)
Bài 1: Phân tích đa thức sau :
a)2x(xy+y^2-3)
b)(x-y)(2x+y)
c)(x-2y)^2
d)(2x-y)(y+2x)
bài 2: Phân tích các đơn thức thành nhân tử
a)3x^2-3xy
b)x^2-4y^2
c)3x-3y+xy-y^2
d)x^2-1+2y-y^2
Bài 3: Tìm x biết:
a)3x^2-6x=0
b)Tìm x,y thuộc z biết: x^2+4y^2-2xy=4
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
a, 3x ( y+1) + y + 1 = 7
(y+1)(3x +1) =7
th1 : \(\left\{{}\begin{matrix}y+1=1\\3x+1=7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y+1=-1\\3x+1=-7\end{matrix}\right.\)=> x = -8/3 (loại)
th3: \(\left\{{}\begin{matrix}y+1=7\\3x+1=1\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}y=6\\x=0\end{matrix}\right.\)
th 4 : \(\left\{{}\begin{matrix}y+1=-7\\3x+1=-1\end{matrix}\right.\)=> x=-2/3 (loại)
Vậy (x,y)= (2 ;0); (0; 6)
b, xy - x + 3y - 3 = 5
(x( y-1) + 3( y-1) = 5
(y-1)(x+3) = 5
th1: \(\left\{{}\begin{matrix}y-1=1\\x+3=5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=2\\x=8\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y-1=-1\\x+3=-5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=-8\end{matrix}\right.\)
th3: \(\left\{{}\begin{matrix}y-1=5\\x+3=1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=6\\x=-2\end{matrix}\right.\)
th4: \(\left\{{}\begin{matrix}y-1=-5\\x+3=-1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=-4\\x=-4\end{matrix}\right.\)
vậy (x, y) = ( 8; 2); ( -8; 0); (-2; 6); (-4; -4)
c, 2xy + x + y = 7 => y = \(\dfrac{7-x}{2x+1}\) ; y ϵ Z ⇔ 7-x ⋮ 2x+1
⇔ 14 - 2x ⋮ 2x + 1 ⇔ 15 - 2x - 1 ⋮ 2x + 1
th1 : 2x + 1 = -1=> x = -1; y = \(\dfrac{7-(-1)}{-1.2+1}\) = -8
th2: 2x+ 1 = 1=> x =0; y = 7
th3: 2x+1 = -3 => x = x=-2 => y = \(\dfrac{7-(-2)}{-2.2+1}\) = -3
th4: 2x+ 1 = 3 => x = 1 => y = \(\dfrac{7+1}{2.1+1}\) = 2
th5: 2x + 1 = -5 => x = -3=> y = \(\dfrac{7-(-3)}{-3.2+1}\) = -2
th6: 2x + 1 = 5 => x = 2; ; y = \(\dfrac{7-2}{2.2+1}\) =1
th7 : 2x + 1 = -15 => x = -8; y = \(\dfrac{7-(-8)}{-8.2+1}\) = -1
th8 : 2x+1 = 15 => x = 7; y = \(\dfrac{7-7}{2.7+1}\) = 0
kết luận
(x,y) = (-1; -8); (0 ;7); ( -2; -3) ; ( 1; 2); ( -3; -2); (2;1); (-8;-1);(7;0)
3xy−2x+5y=293xy−2x+5y=29
9xy−6x+15y=879xy−6x+15y=87
(9xy−6x)+(15y−10)=77(9xy−6x)+(15y−10)=77
3x(3y−2)+5(3y−2)=773x(3y−2)+5(3y−2)=77
(3y−2)(3x+5)=77(3y−2)(3x+5)=77
⇒(3y−2)⇒(3y−2) và (3x+5)(3x+5) là Ư(77)=±1,±7,±11,±77Ư(77)=±1,±7,±11,±77
Ta có bảng giá trị sau:
Do x,y∈Zx,y∈Z nên (x,y)∈{(−4;−3),(−2;−25),(2;3),(24;1)}
Tìm x
a,(x-2).(y+3)=15
b,(3x+2).(1-y)=-7
c,xy-5x=14-(-1)
c',xy+x=5
d,5xy-5x+y=5
a) \(\left(x-2\right)\left(y+3\right)=15\)
\(\Rightarrow\left(x-2\right)\left(y+3\right)=1.15=15.1=\left(-1\right).\left(-15\right)=\left(-15\right).\left(-1\right)=3.5=5.3=\left(-3\right).\left(-5\right)=\left(-5\right).\left(-3\right)\)
Ta có bảng sau:
\(x-2\) | \(1\) | \(15\) | \(-1\) | \(-15\) | \(3\) | \(5\) | \(-3\) | \(-5\) |
\(y+3\) | \(15\) | \(1\) | \(-15\) | \(-1\) | \(5\) | \(3\) | \(-5\) | \(-3\) |
\(x\) | \(3\) | \(17\) | \(1\) | \(-13\) | \(5\) | \(7\) | \(-1\) | \(-3\) |
\(y\) | \(12\) | \(-2\) | \(-18\) | \(-4\) | \(2\) | \(0\) | \(-8\) | \(-6\) |
KL: Các cặp số (x; y)...
b) \(\left(3x+2\right)\left(1-y\right)=-7\)
\(\Rightarrow\left(3x+2\right)\left(1-y\right)=1.\left(-7\right)=\left(-7\right).1=\left(-1\right).7=7.\left(-1\right)\)
Ta có bảng sau:
\(3x+2\) | \(1\) | \(-7\) | \(-1\) | \(7\) |
\(1-y\) | \(-7\) | \(1\) | \(7\) | \(-1\) |
\(x\) | \(-\dfrac{1}{3}\) | \(-3\) | \(-1\) | \(\dfrac{5}{3}\) |
\(y\) | \(8\) | \(0\) | \(-6\) | \(2\) |
KL: Các cặp số (x; y)...
c) \(xy-5x=14-\left(-1\right)\)
\(\Leftrightarrow x\left(y-5\right)=15\)
\(\Rightarrow x\left(y-5\right)=1.15=15.1=\left(-1\right).\left(-15\right)=\left(-15\right).\left(-1\right)=3.5=5.3=\left(-3\right).\left(-5\right)=\left(-5\right).\left(-3\right)\)
Ta có bảng sau:
\(x\) | \(1\) | \(15\) | \(-1\) | \(-15\) | \(3\) | \(5\) | \(-3\) | \(-5\) |
\(y-5\) | \(15\) | \(1\) | \(-15\) | \(-1\) | \(5\) | \(3\) | \(-5\) | \(-3\) |
\(y\) | \(20\) | \(6\) | \(-10\) | \(4\) | \(10\) | \(8\) | \(0\) | \(2\) |
KL: Các cặp số (x; y)...
c') \(xy+x=5\)
\(\Leftrightarrow x\left(y+1\right)=5\)
\(\Rightarrow x\left(y+1\right)=1.5=5.1=\left(-1\right).\left(-5\right)=\left(-5\right).\left(-1\right)\)
Ta có bảng sau:
\(x\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(y+1\) | \(5\) | \(1\) | \(-5\) | \(-1\) |
\(y\) | \(4\) | \(0\) | \(-6\) | \(-2\) |
KL: Các cặp số (x; y)...
d) Chưa tìm ra cách giải, chờ đã...
1.Tìm cặp số nguyên (x,y)sao cho:
a, xy= -11
b,(-x).y=3
c,(x-1)(y+1)=5
d,(x+2)(3-y)= -3
2.Cho biểu thức A=|x-1|+3x-7
a,rút gọn A
b,Tính A khi x=3;x= -5
A = \(\dfrac{5xy^2-3z}{3xy}+\dfrac{4x^2y+3z}{3xy}\)
B = \(\dfrac{3y+5}{y-1}+\dfrac{-y^2-4y}{1-y}+\dfrac{y^2+y+7}{y-1}\)
C = \(\dfrac{6x}{x^2-9}+\dfrac{5x}{x-3}+\dfrac{x}{x+3}\)
D = \(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{3x-2}{2x-4x^2}\)
E = \(\dfrac{x^3+2x}{x^3+1}+\dfrac{2x}{x^2-x+1}+\dfrac{1}{x+1}\)
b: \(B=\dfrac{3y+5}{y-1}-\dfrac{-y^2-4y}{y-1}+\dfrac{y^2+y+7}{y-1}\)
\(=\dfrac{3y+5+y^2+4y+y^2+y+7}{y-1}\)
\(=\dfrac{2y^2+8y+12}{y-1}\)
Bài 1: Tìm x € Z a)1−3x chia hết cho x−2 b)3x+2 chia hết cho 2x+1 Bài 2: Tìm các số nguyên a)x(3−y)−y=0 b)xy+2x+2y=0 c)xy−2x+4y=1 d)x(y+1)+y=0
Bài 1:a) Ta có: \(1-3x⋮x-2\)
\(\Leftrightarrow-3x+1⋮x-2\)
\(\Leftrightarrow-3x+6-5⋮x-2\)
mà \(-3x+6⋮x-2\)
nên \(-5⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(-5\right)\)
\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{3;1;7;-3\right\}\)
Vậy: \(x\in\left\{3;1;7;-3\right\}\)
b) Ta có: \(3x+2⋮2x+1\)
\(\Leftrightarrow2\left(3x+2\right)⋮2x+1\)
\(\Leftrightarrow6x+4⋮2x+1\)
\(\Leftrightarrow6x+3+1⋮2x+1\)
mà \(6x+3⋮2x+1\)
nên \(1⋮2x+1\)
\(\Leftrightarrow2x+1\inƯ\left(1\right)\)
\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow2x\in\left\{0;-2\right\}\)
hay \(x\in\left\{0;-1\right\}\)
Vậy: \(x\in\left\{0;-1\right\}\)
Bài 1 :
a, Có : \(1-3x⋮x-2\)
\(\Rightarrow-3x+6-5⋮x-2\)
\(\Rightarrow-3\left(x-2\right)-5⋮x-2\)
- Thấy -3 ( x - 2 ) chia hết cho x - 2
\(\Rightarrow-5⋮x-2\)
- Để thỏa mãn yc đề bài thì : \(x-2\inƯ_{\left(-5\right)}\)
\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)
\(\Leftrightarrow x\in\left\{3;1;7;-3\right\}\)
Vậy ...
b, Có : \(3x+2⋮2x+1\)
\(\Leftrightarrow3x+1,5+0,5⋮2x+1\)
\(\Leftrightarrow1,5\left(2x+1\right)+0,5⋮2x+1\)
- Thấy 1,5 ( 2x +1 ) chia hết cho 2x+1
\(\Rightarrow1⋮2x+1\)
- Để thỏa mãn yc đề bài thì : \(2x+1\inƯ_{\left(1\right)}\)
\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow x\in\left\{0;-1\right\}\)
Vậy ...
thực hiện phép chia
a (4x^5-8x^3):(-2x^3)
b(9x^3-12x^2 + 3x ) : (-3x)
c (xy^2 + 4x^2y^3 -3x^2y^4):(-1/2x^2y^3)
d[2(x-y)^3-7(y-x)^2 - (y-x)] : (x-y)
e[(x^3 - y) ^5 -2(x-y)^4 + 3(x-y)^2] :[5(x-y)^2]