Câu 26: (0,5đ) Tìm số nguyên x,y sao cho :
xy – 4x + 3y = 15
Tìm cặp số nguyên (x,y) biết:
a, x.(y-7)+y-12=0
b, xy-6x-4y+13=0
c, xy+3y-4x+15=0
a) \(x\left(y-7\right)+y-12=0\left(x;y\inℤ\right)\)
\(\Rightarrow x\left(y-7\right)+y-7-5=0\)
\(\Rightarrow\left(x+1\right)\left(y-7\right)=5\)
\(\Rightarrow\left(x+1\right);\left(y-7\right)\in U\left(5\right)=\left\{-1;1;-5;5\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(-2;2\right);\left(0;12\right);\left(-6;6\right);\left(4;8\right)\right\}\)
b) xy - 6x - 4y + 13 = 0
x(y - 6) - 4y + 24 - 11 = 0
x(y - 6) - 4(y - 6) = 11
(y - 6)(x - 4) = 11
TH1: x - 4 = 1 và y - 6 = 11
*) x - 4 = 1
x = 5
*) y - 6 = 11
y = 17
TH2: x - 4 = -1 và y - 6 = -11
*) x - 4 = -1
x = 3
*) y - 6 = -11
y = -5
TH3: x - 4 = 11 và y - 6 = 1
*) x - 4 = 11
x = 15
*) y - 6 = 1
y = 7
TH4: x - 4 = -11 và y - 6 = -1
*) x - 4 = -11
x = -7
*) y - 6 = -1
y = 5
Vậy ta có các cặp giá trị (x; y) sau:
(-7; 5); (15; 7); (3; -5); (5; 17)
c) xy + 3y - 4x + 15 = 0
xy + 3y - 4x - 12 + 27 = 0
y(x + 3) - 4(x + 3) = -27
(x + 3)(y - 4) = -27
TH1: x + 3 = 1 và y - 4 = -27
*) x + 3 = 1
x = -2
*) y - 4 = -27
y = -23
TH2: x + 3 = -1 và y - 4 = 27
*) x + 3 = -1
x = -4
*) y - 4 = 27
y = 31
TH3: x + 3 = 3 và y - 4 = -9
*) x + 3 = 3
x = 0
*) y - 4 = -9
y = -5
TH4: x + 3 = -3 và y - 4 = 9
*) x + 3 = -3
x = -6
*) y - 4 = 9
y = 13
TH5: x + 3 = 9 và y - 4 = -3
*) x + 3 = 9
x = 6
*) y - 4 = -3
y = 1
TH6: x + 3 = -9 và y - 4 = 3
*) x + 3 = -9
x = -12
*) y - 4 = 3
y = 7
TH7: x + 3 = 27 và y - 4 = -1
*) x + 3 = 27
x = 24
*) y - 4 = -1
y = 3
TH8: x + 3 = -27 và y - 4 = 1
*) x + 3 = -27
x = -24
*) y - 4 = 1
y = 5
Vậy ta có các cặp giá trị (x; y) sau:
(-24; 5); (24; 3); (-12; 7); (6; 1); (-6; 13); (0; -5); (-4; 31); (-2; -23)
Tìm các số nguyên x,y sao cho: xy + x - 3y = 0
xy+x-3y=0
=> (xy+x)-3y-3=0-3
=>x(y+1)-(3y+3)=(-3)
=>x(y+1)-3(y+1)=(-3)
=>(y+1).(x-3)=(-3)
Mà (-3)=1.(-3)=(-1).3
Lập bảng giá trị:
x-3 | 1 | -1 | 3 | -3 |
y+1 | -3 | 3 | -1 | 1 |
x | 4 | 2 | 6 | 0 |
y | -4 | 2 | -2 | 0 |
Vậy các cặp số nguyên (x;y) là (4;-4);(2;2);(6;-2);(0;0)
Tìm số nguyên x biết
a,3x+3y-2xy=7
b,xy+2x+y+11=0
c,xy+x-y=4
d,2x.(3y-2)+(3y-2)=12
e,3x+4y-xy=15
f,xy+3x-2y=11
g,xy+12=x+y
h,xy-2x-y=-6
i,xy+4x=25+5y
ii,2xy-6y+x=9
iii,xy-x+2y=3
k,2.x^2.y-x^2-2y-2=0
l,x^2.y-x+xy=6
Tìm cặp số nguyên (x;y) sao cho: x + 3y = xy + 3
x + 3y = xy + 3
=> -xy + x = -3y + 3
=> x[-y + 1] = 3[-y + 1]
=> x = 3
Vậy với mọi y và x = 3 thì ta đc pt đúng
x+3y=xy+3
=> 3y-3=xy-x
=> 3(y-1)=x(y-1)
=> 3=x
=> x=3
NX : 3+3y=3y+3
=> với x=3 thì y là các giá trị nào cũng thỏa mãn .
VD: 3+3.2=3.2+3=9 ;...
x + 3y = xy + 3
=> -xy + x = -3y + 3
=> x[ -y + 1] = 3[- y + 1]
=> x = 3
Vậy y và x bằng 3 thì ta được phương trình đúng.
Tìm cặp số nguyên x,y biết: xy-3y+4x=17
Tìm các số nguyên x, y sao cho xy-2x+3y=11
Xét \(xy-2x+3y=11\)
\(x\left(y-2\right)+3y-6=5\)
\(x\left(y-2\right)+3\left(y-2\right)=5\)
\(\left(x+3\right)\left(y-2\right)=5\)
\(\Rightarrow x+3;y-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow\)Ta có bảng giá trị:
\(x+3\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(y-2\) | \(5\) | \(-5\) | \(1\) | \(-1\) |
\(x\) | \(-2\) | \(-4\) | \(2\) | \(-8\) |
\(y\) | \(7\) | \(-3\) | \(3\) | \(1\) |
Vậy \(\left(x;y\right)\in\left\{\left(-2;7\right);\left(-4;-3\right);\left(2;3\right);\left(-8;1\right)\right\}\)
TH1: y=-3 (sai)
TH2: y khác -3 vậy x= (11+2y) / (y+3)=2+5/(y+3)
Vì x thuộc Z nên 5/(y+3) phải là số nguyên
==> y+3 phải là ước của 5 ==> y+3 có thể bằng 1, -1, 5, -5. từ đó bạn tìm được x rồi.
k mk nha chúc bn hok tốt
Ta có :
\(xy-2x+3y=11\)
\(\Leftrightarrow\)\(\left(xy-2x\right)+\left(3y-6\right)=5\)
\(\Leftrightarrow\)\(x\left(y-2\right)+3\left(y-2\right)=5\)
\(\Leftrightarrow\)\(\left(x+3\right)\left(y-2\right)=5\)
Đến đây bạn xét các trường hợp ra
Tìm số nguyên x;y sao cho: xy -2x +3y =11
<=>(x+3)y-2x=11
=>(x+3)y-2x-11=0
=>x+3=0
=>x=-3
=>y-2=0
=>y=2
Tìm các số nguyên x và y sao cho:
a) \(4x^2+3y^2-4xy+12x=7y-8\)
b)\(2x^2+y^2+xy=2\left(x+y\right)\)
TÌM CÁC CẶP SỐ NGUYÊN x;y BIẾT :
a)xy-y=15
b)xy+3y-17=0
c)xy-3y+2x=0