Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Khánh Toàn
Xem chi tiết
Rimuru tempest
20 tháng 11 2018 lúc 23:16

theo bđt cauchy schwars dạng engel ta có

\(T=\dfrac{x^2}{y+x}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\)

Dấu '=' xảy ra khi x=y=z

pt \(\Leftrightarrow\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2015\)

\(\Leftrightarrow3\sqrt{2}x=2015\)

\(\Leftrightarrow x=\dfrac{2015}{3\sqrt{2}}\)

vậy \(T_{min}=\dfrac{2015}{\sqrt{2}}\) khi \(x=y=z=\dfrac{2015}{3\sqrt{2}}\)

ko chắc đúng nha bạn :))

Phạm Thành Huy
Xem chi tiết
Vân Thúy
Xem chi tiết
Pham Thanh Huy
Xem chi tiết
Hiền Nguyễn Thị Thu
Xem chi tiết
Hâm cả mớ à
Xem chi tiết
Phước Nguyễn
14 tháng 3 2016 lúc 23:42

Áp dụng bất đẳng thức cho ba số  \(x,y,z\in Z^+\), ta được
\(x^2+y^2\ge2xy\)  \(\Rightarrow\)  \(\frac{x+y}{x^2+y^2}\le\frac{x+y}{2xy}\)  \(\left(1\right)\)

\(y^2+z^2\ge2yz\)   \(\Rightarrow\)  \(\frac{y+z}{y^2+z^2}\le\frac{y+z}{2yz}\)  \(\left(2\right)\)

\(z^2+x^2\ge2xz\)  \(\Rightarrow\)  \(\frac{z+x}{z^2+x^2}\le\frac{z+x}{2xz}\)  \(\left(3\right)\)

Cộng từng vế của  \(\left(1\right);\)  \(\left(2\right)\)  và  \(\left(3\right)\)  ta được  \(\frac{x+y}{x^2+y^2}+\frac{y+z}{y^2+z^2}+\frac{z+x}{z^2+x^2}\le\frac{x+y}{2xy}+\frac{y+z}{2yz}+\frac{z+x}{2xz}=\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}+\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}\)

\(\Leftrightarrow\)  \(P\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2015\)

Dấu  \("="\)  xảy ra  khi và chỉ khi  \(x=y=z=\frac{3}{2015}\)

Vậy,  \(P_{max}=2015\)  \(\Leftrightarrow\)   \(x=y=z=\frac{3}{2015}\)

long Bui
Xem chi tiết
Dịch Dương Thiên Tỉ
Xem chi tiết
THN
Xem chi tiết