Rút gọn phân thức sau:
a) \(\dfrac{12xy^3z⁴}{24x^2y^3z^3}\)
b)\(\dfrac{3x-6}{6x^2-12x}\)
Thu gọn và chỉ ra phần hệ số, phần biến và bậc của các đơn thức sau:
a, \(-5x^2y^4z^5\left(-3xyz^2\right)\)
b, \(12xy^3z^5\left(\dfrac{1}{4}x^3z^3\right)\)
c, \(\left(-3x^2y^3\right)^2.\left(\dfrac{1}{2}x^5yz\right)\)
\(a.=15x^3y^5z^7\) có hệ số là 15 ; phần biến là:x3y5z7 ; bậc là:15
b.\(=3x^4y^3z^8\)có hệ số là: 3 ;phần biến là: x4y3z8 ;có bậc là:15
Rút gọn các phân thức sau:
a) \(\dfrac{x^2-4xy+4y^2}{xy-2y^2}\)
b) \(\dfrac{x^3-36x}{x^2+6x}\)
a)\(\dfrac{x^2-4xy+4y^2}{xy-2y^2}\)
=\(\dfrac{x^2-4xy+\left(2y\right)^2}{y\left(x-2y\right)}\)
=\(\dfrac{\left(x-2y\right)^2}{y\left(x-2y\right)}\)
=\(\dfrac{x-2y}{y}\)
b)\(\dfrac{x^3-36x}{x^2+6x}\)
=\(\dfrac{x\left(x^2-6^2\right)}{x\left(x+6\right)}\)
=\(\dfrac{x\left(x+6\right)\left(x-6\right)}{x\left(x+6\right)}\)
= \(x-6\)
#Fiona
Chúc bạn học tốt !
A = \(\dfrac{5xy^2-3z}{3xy}+\dfrac{4x^2y+3z}{3xy}\)
B = \(\dfrac{3y+5}{y-1}+\dfrac{-y^2-4y}{1-y}+\dfrac{y^2+y+7}{y-1}\)
C = \(\dfrac{6x}{x^2-9}+\dfrac{5x}{x-3}+\dfrac{x}{x+3}\)
D = \(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{3x-2}{2x-4x^2}\)
E = \(\dfrac{x^3+2x}{x^3+1}+\dfrac{2x}{x^2-x+1}+\dfrac{1}{x+1}\)
b: \(B=\dfrac{3y+5}{y-1}-\dfrac{-y^2-4y}{y-1}+\dfrac{y^2+y+7}{y-1}\)
\(=\dfrac{3y+5+y^2+4y+y^2+y+7}{y-1}\)
\(=\dfrac{2y^2+8y+12}{y-1}\)
cho 2 đa thức A= \(-4x^5y^3+x^4y^3-3x^2y^3z^2-x^4y^3+x^2y^3z^2-2y^4\)
a) thu gọn rồi tìm bậc đa thức A
b) tìm đa thức B biết rằng B\(-2x^2y^3z^2+\dfrac{2}{3}y^4-\dfrac{1}{5}x^4y^3=A\)
a: \(A=-4x^5y^3-2x^2y^3z^2-2y^4\)
b: \(B=-4x^5y^3-2x^2y^3z^2-2y^4+2x^2y^3z^2-\dfrac{2}{3}y^4+\dfrac{1}{5}x^4y^3=-4x^5y^3+\dfrac{1}{5}x^4y^3-\dfrac{8}{3}y^4\)
phân tích đa thức sau thành nhân tử
a\(12x^3y-24x^2y^2+12xy^3\)
b\(x^2-6x+xy-6y\)
c\(2x^2+2xy-x-y\)
d\(ax-2x-a^2+2a\)
e\(x^3-3x^2+3x-1\)
f\(3x^2-3y^2-12x-12y\)
b: \(x^2-6x+xy-6y\)
\(=x\left(x-6\right)+y\left(x-6\right)\)
\(=\left(x-6\right)\left(x+y\right)\)
c: \(2x^2+2xy-x-y\)
\(=2x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(2x-1\right)\)
e: \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
1. Tính tổng: S = x+ 2y+3z, biết rằng:
\(\dfrac{1}{x+2y}+\dfrac{1}{2y+3z}+\dfrac{1}{3z+x}=\dfrac{12x}{2y+3z}+\dfrac{24y}{3z+x}+\dfrac{36z}{x+2y}=2016\)
bạn chịu khó suy nghĩ chút sẽ ra bài này dễ mà
Tìm bậc của các đa thức sau:
a) \(x^3y^3+6x^2y^2+12xy-8
\)
b) \(x^2y+2xy^2-3x^3y+4xy^5\)
c) \(x^6y^2+3x^6y^3-7x^5y^7+5x^4y\)
d) \(2x^3+x^4y^5+3xy^7-x^4y^5+10-xy^7\)
e) \(0,5x^2y^3+3x^2y^3z^3-a.x^2y^3-x^4-x^2y^3\) với a là hằng số
a, bậc 6
b, bậc 6
c, bậc 12
d, bậc 9
e, bậc 8
Tính tổng \(S=x+2y+3z\), biết rằng:
\(\dfrac{1}{x+2y}+\dfrac{1}{2y+3z}+\dfrac{1}{3z+x}=\dfrac{12x}{2y+3z}+\dfrac{24y}{3z+x}-\dfrac{36z}{x+2y}=2016\)
cho đa thức :A=\(-4x^5y^3+x^4y^3-3x^2y^3z^2+4x^5y^3-x^4y^3+x^2y^3z^2-2y^4\)
a, thu gọn rồi tìm bậc của đa thức A
b, tìm đa thức B , biết rằng :B\(-2x^2y^3z^2+\dfrac{2}{3}y^4-\dfrac{1}{5}x^4y^3=A\)
a, \(A=-4x^5y^3+x^4y^3-3x^2y^3z^2+4x^5y^3-x^4y^3+x^2y^3z^2-2y^4\)
\(=2x^2y^3z^2-2y^4\)
Bậc của đa thức A là 7
Vậy...
b, Ta có: \(B-2x^2y^3z^2+\dfrac{2}{3}y^4-\dfrac{1}{5}x^4y^3=A\)
\(\Rightarrow B-2x^2y^3z^2+\dfrac{2}{3}y^4-\dfrac{1}{5}x^4y^3=2x^2y^3z^2-2y^4\)
\(\Rightarrow B=2x^2y^3z^2-2y^4+2x^2y^3z^2-\dfrac{2}{3}y^4+\dfrac{1}{5}x^4y^3\)
\(=4x^2y^3z^2-\dfrac{8}{3}y^4+\dfrac{1}{5}x^4y^3\)
Vậy...