Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Phú Sơn
Xem chi tiết
Phạm Tuấn Đạt
29 tháng 12 2018 lúc 15:35

\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+b^2+2ab-2ab\right)+6a^2b^2\left(a+b\right)\)

\(M=a^2+2ab+b^2-3ab+3ab-6a^2b^2+6a^2b^2\)

\(M=\left(a+b\right)^2=1\)

Nguyễn Xuân BẢo
1 tháng 4 2019 lúc 20:19

ngu lắm sơn à

Lãnh Hàn Thiên Kinz
19 tháng 7 2020 lúc 10:37

bạn Nguyễn Xuân Bảo có làm đc ko mà nói bạn đăng bài ngu :)) đây là trang học toán thì bạn ấy đăng bài ko bt làm lên thì đã sao :>

Khách vãng lai đã xóa
phạm hiển vinh
Xem chi tiết
Thám Tử THCS Nguyễn Hiếu
12 tháng 3 2020 lúc 22:12

Câu hỏi tương tự có nha

Khách vãng lai đã xóa
phạm hiển vinh
12 tháng 3 2020 lúc 22:19

oki bạn

Khách vãng lai đã xóa
Bibi2211>>
Xem chi tiết
Linh Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 12 2020 lúc 12:26

Ta có: \(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\cdot\left(a+b\right)\)

\(\Leftrightarrow M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+b^2\right)+6a^2b^2\)

\(\Leftrightarrow M=a^2-ab+b^2+3ab\left(a^2+2ab+b^2\right)\)

\(\Leftrightarrow M=a^2-ab+b^2+3ab\cdot\left(a+b\right)^2\)

\(\Leftrightarrow M=a^2-ab+3ab+b^2\)

\(\Leftrightarrow M=\left(a+b\right)^2=1^2=1\)

Vậy: Khi a+b=1 thì M=1

❖ASHツ
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 1 2023 lúc 14:22

M=(a+b)^3-3ab(a+b)+3ab[(a+b)^2-2ab]+6a^2b^2

=1-3ab+3ab(1-2ab)+6a^2b^2

=1

Đỗ Phương Thảo
Xem chi tiết
Agatsuma Zenitsu
29 tháng 1 2020 lúc 0:29

\(1,M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

Thay \(a+b=1\) vào ta được:

\(1\left(1-3ab\right)+3ab\left(1-2ab\right)+6a^2b^2\)

\(=1-3ab+3ab-6a^2b^2+6a^2b^2\)

\(=1\)

Vậy ......................

Khách vãng lai đã xóa
hghghghg
Xem chi tiết
Mai Anh
13 tháng 2 2018 lúc 7:09

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab[\left(a+b\right)^2-2ab]+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)[\left(a+b\right)^2-3ab]+3ab[\left(a+b\right)^2-2ab+6a^2b^2\left(a+b\right)\)

\(=1-ab+3ab\left(1-2ab\right)+6a^2b^2\)

\(=1-3ab+3ab-6a^2b^2+6a^2b^2\)

\(=1\)

Phong Linh
10 tháng 6 2018 lúc 10:38

ta có : M=2.(a^3  +b^3) -3.(a^2 + b^2)

       <=>M=2.(a+b)(a^2  -ab  +b^2)  - 3(a^2  +3b^2)

      <=>M=2(a^2  -ab  +b^2)  -3(a^2 +b^2)               vì a+b=1(gt)

      <=>M=-(a^2 +b^2 +2ab)

      <=>M=-(a+b)^2

      <=>M=-1  (vì a+b=1)

Vanh Leg
22 tháng 12 2018 lúc 19:43

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= (a + b)((a + b)2 - 3ab) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2b2

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2 = 1

Nguyễn Minh Thọ
Xem chi tiết
Transformers
Xem chi tiết
Phạm Xuân Trường
15 tháng 8 2016 lúc 20:53

= (a+b)(a2-ab+b2) + 3ab((a+b)2-2ab) + 6a2b2(a+b)

Thay a+b = 1 vài biểu tức trên ta có:

a2-ab+b2+ 3ab(1-2ab)+6a2b2=a2-ab+b2+3ab-6a2b2+6a2b2

                                          = a2 + 2ab + b2

                                                        = (a+b)2

                                                        = 1

Vanh Leg
22 tháng 12 2018 lúc 19:42

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= (a + b)((a + b)2 - 3ab) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2b2

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2 = 1