chứng minh(x-y-z)^2=x^2+y^2+z^2-2xy+2xz+2yz
Chứng minh rằng:(x+y+z)2=x2+y2+z2+2xy+2xz+2yz
Chứng minh biểu thức sau không phụ thuộc vào x :
(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2xz
1. cho x,y,z>0. Chứng minh \(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge1\)
\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=1\)
Dấu "=" xảy ra khi \(x=y=z\)
Với mọi x,y,z chứng minh
a, x²+y²+z² ≥ 2xy-2xz+2yz
b, x²+y²+z²+3 ≥ 2(x+y+z)
a) \(\left(x+y\right)^2\ge0\Leftrightarrow x^2+y^2\ge-2xy\Leftrightarrow2\left(x^2+y^2\right)\ge x^2+y^2-2xy\)
\(\Leftrightarrow\frac{x^2+y^2}{2}\ge\frac{\left(x-y\right)^2}{4}\)
Dấu \(=\)khi \(x+y=0\Leftrightarrow x=-y\).
b) \(\frac{x^2+y^2+z^2}{4}\ge2\left(xy+yz+zx\right)\)
Câu này có lẽ bạn sai đề rồi nhé.
chứn minh rằng
câu 1:(x+y+z)2=x2+y2+z2+2xy+2xz+2yz
câu 2:(x-y-z)2=x2+y2+z2-2xy-2xz+2yz
so sánh
A=2009.2009
B=2008.2010
Cho x, y, z dương
Chứng minh rằng
\(A = { x^2 \over x^2+2xy} + { y^2 \over y^2+2yz} + {z^2 \over z^2+2xz}= {x^2+y^2+z^2 \over (x+y+z)^2}\)
Cho x,y,z dương và x + y + z = 1. Chứng minh rằng \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge9\)
Áp Dụng BĐT svacxơ, ta có
\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}=9\left(ĐPCM\right)\)
^_^
Đặt a = \(x^2+2yz\); b = \(y^2+2xz\); c = \(z^2+2xy\)
\(\Rightarrow\)\(a,b,c>0\)và \(a+b+c=\left(x=y+z\right)^2=1\)
+) C/m : \(\left(a=b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Rightarrow\)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)
Hay \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge9\)
\(\Rightarrow\)ĐPCM
hên xui thôi -_-
CM BĐT phụ: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Leftrightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge9\)(đúng)
Áp dụng BĐT trên ta có:
\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}=\frac{9}{\left(x+y+z\right)^2}=9\)
Cho x,y,z >0 và x+y+z=3. Chứng minh rằng \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge1\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\right)[(x^2+2yz)+(y^2+2xz)+(z^2+2xy)]\geq (1+1+1)^2\)
\(\Leftrightarrow \frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\geq \frac{9}{x^2+2yz+y^2+2xz+z^2+2xy}=\frac{9}{(x+y+z)^2}=\frac{9}{3^2}=1\)
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=1$