\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=1\)
Dấu "=" xảy ra khi \(x=y=z\)
\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=1\)
Dấu "=" xảy ra khi \(x=y=z\)
Cho x,y,z đôi một khác nhau và \(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)=0. Tính giá trị của A= \(\frac{yz}{x^2+2yz}\)+\(\frac{xz}{y^2+2xz}\)+\(\frac{xy}{z^2+2xy}\)
cho x,y,z là các số thực dương khác 1 và xyz=1. Chứng minh rằng \(\frac{x^2}{\left(x-1\right)^2}+\frac{y^2}{\left(y-1\right)^2}+\frac{z^2}{\left(z-1\right)^2}\ge1\)
c/m: a) x^2 +y^2+z^2>=2xy-2xz+2yz
b) x^4+y^4+z^2+1 >=2x.(xy^2-x+z+1)
Cho x,y,z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Tính \(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
giúp em gấp
Rút gọn
A=\(\frac{2xy-x^2+z^2-y^2}{x^2+z^2-y^2+2xz}\)
các bạn ơi, giúp mình với:
Cho \(x\ge y\ge z>0\)
Chứng minh rằng \(\frac{x^2y}{z}+\frac{y^2z}{x}+\frac{z^2x}{y}\ge x^2+y^2+z^2\)
a) Cho \(x,y,z\ne0\) và \(x-y-z=0\) . Tính \(K=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
b) \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\) Chứng minh \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Cho x;y;z > 1;x+y+z=1
Tìm GTNN của \(M=\frac{x-2}{z^2}+\frac{y-2}{x^2}+\frac{z-2}{y^2}\)
1/ CMR:
a) với mọi x khác 1 biểu thức:
P = \(\frac{x^4-x^3-x+1}{x^4+x^3+3x^2+2x+2}\) luôn nhận giá trị dương
b) với mọi x, biểu thức:
Q = \(\frac{-2x^2-2}{x^4+2x^3+6x^2+2x+5}\) luôn nhận giá trị âm
2/ Cho \(x\ne0,y\ne0,z\ne0\) và x = y+z
\(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\)
CMR: \(\frac{1}{x^2}-\frac{1}{y^2}-\frac{1}{z^2}=1\)
3/ Cho \(a\ne0,b\ne0,c\ne0\) và
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)=\(\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}\)
CMR: x = y = z = 0