Cho 5m+2n chia hết cho 3. CMR: 4m+2014n chia hết cho 3.
Cho 4m + 2n chia hết cho 7. Chứng minh 5m - n chia hết cho 7
Do \(4m+2n⋮7\Rightarrow2m+n⋮7\left(2⋮̸7\right)\)
\(\Rightarrow6\left(2m+n\right)⋮7\)
\(\Rightarrow12m+6n⋮7\)
\(\Rightarrow5m-n+7m+7n⋮7\)
\(\Rightarrow5m-n⋮7\)
Bài 1:
$5a+8b\vdots 3$
$\Leftrightarrow 5a+8b-3(2b+2a)\vdots 3$
$\Leftrightarrow 5a+8b-6b-6a\vdots 3$
$\Leftrightarrow 2b-a\vdots 3$
Ta có đpcm.
Bài 2. Bổ sung thêm điều kiện $n$ là số tự nhiên.
Ta có: $A=n(2n+7)(7n+7)=7n(2n+7)(n+1)$
Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên sẽ tồn tại 1 số chẵn và 1 số lẻ
$\Rightarrow n(n+1)\vdots 2$
$\Rightarrow A=7n(n+1)(2n+7)\vdots 2(1)$
Mặt khác:
Nếu $n\vdots 3$ thì $A=7n(n+1)(2n+7)\vdots 3$
Nếu $n$ chia $3$ dư $1$ thì $2n+7$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Tóm lại $A\vdots 3(2)$
Từ $(1);(2)$ mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$
cho a^2n+7 chia hết cho 3 . CMR a^3+46 chia hết cho 27
1, cmr Với mọi x thuộc N luôn có: A(x)=46^x+296.13^x chia hết cho 1947
2,cmr A=220^119^69+119^69^220+69^220^119 chia hết cho 102
B=1890^1930+1945^1975+1 chia hết cho 7
3,cmr:
a,12^2n+1+11^n+2 chia hết cho 133
b,7.5^2n+12.6^n chia hết cho19
c,2.7^n+1 chia hết cho 3
d,21^2n+1+17^2n+1+19 chia hết cho19
e,9^n-1 chia hết cho 4
1.Tìm số tự nhiên sao cho:
a, 2n + 7 chia hết cho n+1
b, 2n + 1 chia hết cho 6 - n
c, 3n chia hết cho 5 - 2n
d, 3n chia hết cho 2n + 6
e,n+3 chia hết cho n - 1
f,4n + 3 chia hết cho 2n - 1
2. CMR: 1 số đc ghi bởi 6 chữ số giống nhau ( VD: 777777) thì chia hết cho 37037
Tìm số tự nhiên n để 2014^n+n^2014+2014n chia hết cho 3
Bài 1: cmr 3^105 +4^105 chia hết cho 13
Bài 2 : cmr 2^70 +3^70 chia hết cho 13
Bài 3 : cmr
a)( 6^2n+1) + (5^n) +2 chia hết cho 31 với mọi n thuộc N*
b) (2^2^2n+1) + 3 chia hết cho 7 với mọi n thuộc N
Bài 5 : tìm dư trong phép chia
a) 1532 -1 cho 9
b)5^70 + 7^50 cho 12
Tìm n thuộc N* biết (2014n2+2014n+2) chia hết cho n+1
=2014n(n+1)+2
=> 2 phải chia hết cho (n+1)
=>n = 1
=2014n(n+1)+2
=> 2 phải chia hết cho (n+1)
=>n = 1
1.Chứng minh với mọi số nguyên n thì:
a) n(2n-3)-2n(n+1) luôn chia hết cho 5
b)(2n-3).(2n+3)-4n(n-9) luôn chia hết cho 9
2.Cho a và b là 2 số tự nhiên biết rằng a chia 5 dư 1, b chia 5 dư 4, cmr a.b chia 5 dư 4
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)