Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hải Lý
Xem chi tiết
ST
12 tháng 3 2018 lúc 21:28

A B C M D

Trên tia đối của MA lấy điểm D sao cho MA = MD

Xét \(\Delta ABM\) và \(\Delta DCM\) có:

\(BM=CM\left(gt\right)\)

\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)

\(MA=MD\) (cách vẽ)

\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)

\(\Rightarrow AB=CD\)(2 cạnh tương ứng)

Xét \(\Delta ACD\) có: \(AD< AC+CD\)

\(\Rightarrow2AM< AC+AB\)

\(\Rightarrow AM< \frac{AB+AC}{2}\left(1\right)\)

Xét \(\Delta MAB\)có: \(AM>AB-BM\)

Xét \(\Delta MAC\)có: \(AM>AC-MC\)

\(\Rightarrow AM+AM>AB-BM+AC-MC\)

\(\Rightarrow2AM>AB+AC-\left(BM+CM\right)\)

\(\Rightarrow2AM>AB+AC-BC\)

\(\Rightarrow AM>\frac{AB+AC-BC}{2}\left(2\right)\)

Từ (1) và (2) => \(\frac{AB+AC-BC}{2}< AM< \frac{AB+AC}{2}\left(đpcm\right)\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
13 tháng 9 2023 lúc 21:50

a) Vì \(AM = MB \Rightarrow M\) là trung điểm của \(AB\) (do \(M\) thuộc \(AB\))

\( \Rightarrow AM = \frac{1}{2}AB \Leftrightarrow \frac{{AM}}{{AB}} = \frac{1}{2}\);

Vì \(AN = NC \Rightarrow N\) là trung điểm của \(AC\) (do \(N\) thuộc \(AC\))

\( \Rightarrow AN = \frac{1}{2}AC \Leftrightarrow \frac{{AN}}{{AC}} = \frac{1}{2}\).

b) Vì \(\frac{{AM}}{{AB}} = \frac{1}{2};\frac{{AN}}{{AC}} = \frac{1}{2} \Rightarrow \frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\).

Xét tam giác \(ABC\) có \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\) nên áp dụng định lí Thales đảo ta được \(MN//BC\).

c) Xét tam giác \(ABC\) có \(MN//BC\) nên áp dụng hệ quả định lí Thales ta được \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\)

Mà \(\frac{{AM}}{{AB}} = \frac{1}{2} \Rightarrow \frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}} = \frac{1}{2}\).

Vậy \(\frac{{MN}}{{BC}} = \frac{1}{2}\) (điều phải chứng minh).

Mai Nguyên Phương
Xem chi tiết
An Binnu
Xem chi tiết
Trường Giang Võ Đàm
Xem chi tiết
Nguyen tran giang linh
Xem chi tiết
Hải Ninh
23 tháng 12 2016 lúc 12:22

Bn tự vẽ hình nha!!!

a) Xét \(\Delta ABM\)\(\Delta DCM\) có:

MB = MC (M là trung điểm BC (gt))

\(\widehat{AMB} = \widehat{DMC}\)(đối đỉnh)

MA = MD (gt)

\(\Rightarrow\)\(\Delta ABM = \Delta DCM (cgc)\)

b) Vì \(\Delta ABM = \Delta DCM (cmt)\)

\(\Rightarrow\)\(\widehat{BAM} = \widehat{CDM}\) (2 góc tương ứng)

mà 2 góc này nằm ở vị trí so le trong

\(\Rightarrow\) AB // CD

c) \(\Delta ABM = \Delta DCM (cmt)\)

\(\Rightarrow\) AB = DC (2 cạnh tương ứng)Vì AB // CD (cmt)\(AB \perp AC \)\(\Rightarrow\) \(CD \perp AC\) (Định lí 2 bài từ vuông góc đến song song)Xét \(\Delta ABC\)\(\Delta CDA\) có:\(\widehat{BAC} = \widehat{DCA} = 90^0 \)AB = CD (cmt)AC chung\(\Rightarrow\)\(\Delta ABC = \Delta CDA\) (2 cạnh góc vuông)\(\Rightarrow\) AD = BC (2 cạnh tương ứng)mà \(AM=\frac{1}{2}AD\)\(\Rightarrow AM=\frac{1}{2}BC\) 

 

Trường Giang Võ Đàm
Xem chi tiết
Chẻmpai Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 3 2023 lúc 22:08

a: AB<AC<BC

=>góc C<góc B<góc A

b: Xét ΔCBM có

CA vừa là đường cao, vừa là trung tuyến

=>ΔCBM cân tại C

c: N ở đâu vậy bạn?

Lê Văn quyết
Xem chi tiết