Cho tam giác ABC có AB=8cmAC=6cm.Trên cạnh AB lấy điểm M sao cho BM=3cm,từ M kẻ MN vuông góc với BC.Gọi D là giao điểm của AC và MN.
a)Tính BC,MN,Snbm/Sabc
b)CM:BAN=BCM
c)DA.DC+BN.BC=BD^2
P/s:Vẽ gíup mk cả hình nữa nak
Cho tam giác ABC có AC=6cm,AB=8cm.Trên cạnh AB lấy điểm M sao cho BM=3cm,từ M kẻ MN vuông góc với BC.Gọi D là giao điểm của AC và MN.
a)Tính BC,MN,Snbm/Sabc
b)DA.DC+BN.BC=BD^2
P/s:Vẽ gíup mk cái hình nka
Cho tam giác ABC vuông tại A có AB=8cm,AC=6cm.Trên cạnh AB lấy điểm M sao cho BM=3cm,từ M vẽ MN vuông góc với BC.Gọi D là giao điểm của AC và MN
a)Tính BC,MN,\(\frac{S_{\text{△}NBM}}{S_{\text{△}ABC}}\)
b)Chứng minh \(\widehat{BAN}=\widehat{BCM}\)
c)DA.DC+BN.BC=BD2
Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối củNa tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N chứng minh rằng BM=CN ;BC<MN; đường thẳng vuông góc với MN tại giao điểm MN và BC luôn luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
Cho tam giác ABC cân tại A, M thuộc AB, N thuộc tia đối của CA sao cho BM=CN. Đường thẳng vuông góc với AB kẻ từ B và đường thằng vuông góc với AC kẻ từ C cắt nhau tại O. Gọi H là giao điểm của AO và BC. Kẻ HD vuông góc với AC(D thuộc AC).
a. CMR: Tam giác MON cân
b. Biết HA=5cm, HD=3cm. Tính HC
c. Gọi E là giao điểm của Mn và BC. CMR: OE vuông góc với MN
(Mình cần gấp lắm, giúp mình nha)
Câu a
Xét tam giác vuông AB0 và tam giác vuông ACO
AB=AC( gt )
AO cạnh chung
=> Tam giác ABO = Tam giác ACO (ch-cgv)
=>OB=OC( 2 cạnh tương ứng )
Xét tam giác vuông MBO và tam giác vuông NCO
MB=NC ( gt)
OB=OC (cmt)
=>Tam giác MBO = Tam giác NCO( 2 cgv )
=>OM=ON
=>tam giác NOM cân tại 0
cTa có tam giác NOM cân tại O
Lại có : HOB^=HOC^ (cn câu a)
=.HOM^+MOB^=HON^+NOC^
Mà MOB^=NOC^ (cm câu a)
=>HOM^=HON^
Xét tam giác MEO và tam giác NEO
EO cạnh chung
EOM^=EON^ (cmt)
OM=ON ( cm câu a)
=>Tam giác EOM=tam giác EON ( c-g-c )
=> OEN^=OEM^
Mà OEN^+OEM^=180* (góc bẹt)
=>OEM^=OEN^=180*/2=90* ( đpcm )
- câu b làm thế nào vậy ạ?
Cho tam giác ABC vuông tại A và AB = 6cm, AC = 8cm. Trên cạnh BC lấy điểm M sao cho BM = AB. Qua M dựng đường thẳng vuông góc với BC cắt đường thẳng AB tại N.
a. Tính BC
b. Chứng minh tam giác ABC = tam giác MBN
c. Gọi D là giao điểm của MN và AC. Chứng minh BD là đường trung trực củaAM.
d. Chứng minh tam giác DCN cân.
Cho tam giác ABC cân tại A. Lấy điểm M thuộc AB, điểm N thuộc tia đối của tia CA sao cho BM=CN. Đường thẳng vuông góc với AB kẻ từ B cắt đường thẳng vuông góc với AC kẻ từ C tại điểm O. Gọi H là giao điểm của AO và BC, kẻ HD vuông góc với AC(D thuộc AC)
a. Chứng minh rằng: Tam giác MON cân
b. Biết AH= 5 cm, HD=3 cm. Tính độ dài HC
c. Gọi F là giao điểm của MN và BC. Chứng minh rằng OF vuông góc với MN
Cho tam giác ABC vuông tại A, có AB = 3cm, BC =5cm. Trên cạnh BC lấy điểm D sao cho BD = 3cm. Đường thẳng vuông góc với BC tại D cắt cạnh AC tại M, cắt tia BA tại N.
a/ Tính AC
b/ So sánh các góc của tam giác ABC
c/ c) Chứng minh MA = MD và tam giác MNC cân
a: AC=4cm
b: Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
c: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
BA=BD
Do đó: ΔBAM=ΔBDM
Suy ra: MA=MD
Xét ΔAMN vuông tại A và ΔDMC vuông tại D có
MA=MD
\(\widehat{AMN}=\widehat{DMC}\)
Do đó: ΔAMN=ΔDMC
Suy ra: MN=MC
hay ΔMNC cân tại M
Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho CE = BD . Các đường thẳng vuông góc với BC kẻ từ D cắt AB tại M và kẻ từ E cắt AC tại N.
a) CMR: BM = CN.
b) Gọi I là giao điểm của MN với BC, đường thẳng vuông góc với MN tại I cắt đường thẳng AH tại K (H là trung điểm của BC). Chứng minh tam giác KMN cân.
c) CMR: CK vuông góc với AN.
a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\) (Hai góc đối đỉnh)
Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)
Xét tam giác vuông BDM và CEN có:
BD = CE
\(\widehat{ECN}=\widehat{DBM}\) (cmt)
\(\Rightarrow\Delta BDM=\Delta CEN\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow BM=CN\) (Hai cạnh tương ứng)
b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)
Ta thấy MD và NE cùng vuông góc BC nên MD // NE
Suy ra \(\widehat{DMI}=\widehat{ENI}\) (Hai góc so le trong)
Xét tam giác vuông MDI và NEI có:
MD = NE
\(\widehat{DMI}=\widehat{ENI}\)
\(\Rightarrow\Delta MDI=\Delta NEI\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow MI=NI\)
Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.
c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\) (1) và BK = CK
Xét tam giác BMK và CNK có:
BM = CN (cma)
MK = NK (cmb)
BK = CK (cmt)
\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\) (2)
Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)
Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)
Vậy \(KC\perp AN\)
ở câu c đáng lẽ th c.c.c khi xét tam giác BMK và CNK chứ
cho tam giác ABC có AB=3cm, AC=4cm, BC=5cm. Kẻ AH vuông góc với Bc ( H thuộc BC ). trên cạnh BC lấy điểm D sao cho BD=BA, trên canh AC lấy điểm M sao cho AM=AH. Gọi N là giao điểm của DM và AH.
a) chứng minh tam giác ABC vuông.
b) chứng minh tam giác ACN cân
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
b: góc MAD+góc BAD=90 độ
góc DAH+góc BDA=90độ
góc BAD=góc BDA
=>góc MAD=góc HAD
Xét ΔAHD và ΔAMD có
AH=AM
góc HAD=góc MAD
AD chung
=>ΔAHD=ΔAMD
=>góc AMD=90 độ
Xét ΔAMN vuông tại M và ΔAHC vuông tại H có
AM=AH
góc MAN chung
=>ΔAMN=ΔAHC
=>AN=AC
=>ΔANC cân tại A