Cho tam giác ABC cân tại A. Lấy điểm D trên cạnh BC, trên tia đối của tia CB lấy điểm E sao cho CE=BD. Các đường thẳng vuông góc với BC tại D và E lần lượt cắt các đường thẳng AB và Ac theo thứ tự tại M, N. Gọi I là giao điểm của MN với BC. CMR đường thẳng vuông góc với MN luôn đi qua một điểm cố đinh.
Cho tam giác ABC vuông tại A có AB=6cm,AC=8cm.Kẻ đường phân giác BD (D thuộc AC).Trên cạnh BC lấy điểm E sao cho BE=BA
a) Tính BC
b) Chứng minh AD=ED và DE vuông góc BC
c)Kẻ AK vuông góc vớiBC (K thuộc BC).Gọi H là giao điểm của AK và BD.
Chứng minh EH//AC
(CẦN GẤP)
Cho tam giác ABC cân tại A (góc A < 45 độ), lấy điểm M thuộc BC, từ M kẻ MH // AB. Điểm H thuộc AC. Kẻ MI // AC (I thuộc AB).
Chứng minh:
a) Tam giác AIH = Tam giác MHI
b) AI = HC
c) Lấy N sao cho HI là trung trực của MN. CMR: IN = IB
d) Gọi giao điểm NH và AB là D. CMR: Chu vi tam giác ADH không phụ thuộc vào vị trí điểm M trên BC
Plz giúp với đặc biệt câu d .
Cho tam giác ABC đều trên cạnh BC lấy điểm E bất kì đường thẳng vuông góc với AC kẻ từ E cắt đường thẳng vuông góc với AB kẻ từ B tại D lấy trung điểm K của đoạn EC trên tia đối của tia KD lấy điểm F sao cho KD=FK
Từ E kẻ đường thẳng song song với AB cắt AC tại M gọi G là tọng tâm của tam giác CME và I là trung điểm của đoạn MB tính góc AIG
Cho tam giác ABC với độ dài 3 cạnh AB = 3cm, BC = 5cm, AC = 4cm
a) Tam giác ABC là tam giác gì? Vì sao?
b) Trên cạnh BC lấy điểm D sao cho BA = BD . Từ D vẽ Dx vuông góc với BC (Dx cắt AC tại H). Chứng minh rằng: BH là tia phân giác của góc ABC
c) Vẽ trung tuyến AM. Chứng minh tam giác ABC cân
Tứ diện ABCD có AB, AC, AD đôi một vuông góc. Tam giác ABC cân tại A, có AB = 2a, A C D = 60 o . M là trung điểm AB, N ∈ B C sao cho BN = 2NC. Khi đó khoảng cách từ P đến mặt phẳng (BCD) bằng (với P là giao điểm MN và AC)
A. 2 a 21 7
B. a 21 7
C. a 7 7
D. 2 a 7 7
Tứ diện ABCD có AB, AC, AD đôi một vuông góc. Tam giác ABC cân tại A, có A B = 2 a , A C D = 60 ° . M là trung điểm AB, N ∈ B C sao cho B N → = 2 N C → . Khi đó khoảng cách từ P đến mặt phẳng (BCD) bằng (với P là giao điểm MN và AC)
A. 2 a 21 7
B. a 21 7
C. a 7 7
D. 2 a 7 7
Cho tam giác ABC vuông tại A có AB= 9cm ; BC=10cm
a. Tính AC và so sánh các góc tam giác ABC
b. Trên tia đối tia AB lấy điểm D sao cho A là trung điểm BD. Chứng minh tam giác BCD cân
c. Gọi E; F lần lượt là trung điểm các cạnh DC, BC. Đường thẳng BE cắt cạnh AC tại M.
Tính CM và chứng minh 3 điểm D; M; F thẳng hàng
Cho tam giác ABC (AB < AC) có AM là phân giác của góc A.(M thuộc BC).Trên AC lấy D sao cho AD = AB. a. Chứng minh: BM = MD b. Gọi K là giao điểm của AB và DM .Chứng minh: DAK = BAC c. Chứng minh : AKC cân d. So sánh : BM và CM.