Cho tam giác ABC vuông tại A. Tính độ dài câc cạnh của tam giác ABC biết BC=15cm và AB=2AC
Cho tam giác ABC vuông tại A có BC= 12cm. Tính độ dài 2 cạnh góc vuông biết AB=3/2AC
Áp dụng định lý pytago có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\left(\dfrac{3}{2}AC\right)^2+AC^2=12^2\)
\(\Leftrightarrow AC=\dfrac{24\sqrt{13}}{13}\) cm
Suy ra \(AB=\dfrac{36\sqrt{13}}{13}\) cm
Vậy...
cho tam giác ABC vuông tại A, tính độ dài cạnh BC trong trường hợp sau : AB = 2AC và AB + AC
a) Cho tam giác ABC vuông tại A có BC=15cm, AB:AC=3:4. Tính độ dài cạnh AB, AC
b) Cho tam giác ABC vuông tại A có AB=24cm, AC:BC=5:13. Tính độ dài cạnh AC,BC
Mình làm mẫu cho bạn câu a) nhé
a) Theo định lí Pytago ta có :
BC2 = AB2 + AC2
152 = AB2 + AC2
AB : AC = 3:4
=> \(\frac{AB}{3}=\frac{AC}{4}\)=> \(\frac{AB^2}{3^2}=\frac{AC^2}{4^2}\)và AB2 + AC2 = 152
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{AB^2}{3^2}=\frac{AC^2}{4^2}=\frac{AB^2+AC^2}{3^2+4^2}=\frac{15^2}{25}=\frac{225}{25}=9\)
\(\frac{AB^2}{3^2}=9\Rightarrow AB^2=81\Rightarrow AB=\sqrt{81}=9cm\)
\(\frac{AC^2}{4^2}=9\Rightarrow AC^2=144\Rightarrow AC=\sqrt{144}=12cm\)
Ý b) tương tự nhé
Cho tam giác ABC vuông tại A biết AB=15cm; BC = 17 cm. Tính độ dài cạnh AC?
Cho tam giác ABC có BC= 1cm; AC= 7cm và độ dài cạnh AB là một số nguyên (cm).Tính độ dài AB và cho biết tam giác ABC là tam giác gì?
A. AB= 7cm và tam giác ABC vuông tại A
B. AB= 7cm và tam giác ABC cân tại A
C. AB= 7cm và tam giác ABC vuông cân tại A
D. AB= 8cm và tam giác ABC vuông tại B
Cho tam giác ABC vuông tại A, có BC = 15cm. Tính độ dài hai cạnh góc vuông và đường cao AH, biết AB = \(\dfrac{3}{4}\) AC
Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC=12\left(cm\right)\)
\(\Leftrightarrow AB=9\left(cm\right)\)
hay AH=7,2(cm)
AB=3/4AC
Theo pytago ta có: AB²+AC²=BC²
(¾AC)²+AC²=15²
=>AC=12
=>AB=¾.12=9
AB.AC=AH.BC( HỆ THỨC LƯỢNG)
=>AH=7.2
Cho tam giác ABC vuông tại A có AH là đường cao. Từ H vẽ HD vuông góc với cạnh AB tại D, vẽ hE vuông góc với cạnh AC tại E. Biết AB = 15cm, BC = 25cm.
1)Tính độ dài cạnh AC và diện tích tam giác ABC.
2)Chứng minh tứ giác ADHE là hình chữ nhật.
3)Trên tia đối của AC lấy điểm F sao cho AF = AE. Chứng minh tứ giác AFDH là hình bình hành.
4)Gọi K là điểm đối xứng của B qua A, gọi M là trung điểm của AH. Chứng minh CM vuông góc HK.
1: AC=20cm
\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{15\cdot20}{2}=150\left(cm^2\right)\)
2: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó: ADHE là hình chữ nhật
3: Xét tứ giác AFDH có
AF//DH
AF=DH
Do đó: AFDH là hình bình hành
Cho tam giác ABC vuông tại A và AB<AC. Các tia phân giác của góc B và góc C cắt nhau tại I.Gọi M là trung điểm của cạnh BC, biết rang góc MIB =90 độ
a) CMR: AB+BC=2AC
b)Tính tỉ số của các cạnh của tam giác ABC
Cho tam giác ABC vuông tại A và đường cao AH. Biết A = 90 độ, AB = 15cm, AC = 20cm.
a) TÍnh cạnh BC.
b) Tính độ dài của AH, BH và HC