tính:
A=(1-1/2).(1-1/3).(1-1/4). ....(1-1/2000)
B=(1+1/2).(1+1/3).(1+1/4). ....(1+1/2000)
tính:
A=(1-1/2).(1-1/3).(1-1/4). ....(1-1/2000)
B=(1+1/2).(1+1/3).(1+1/4). ....(1+1/2000)
=1/2 . 2/3 ....1999/2000
=1.2....1999/2.3...2000
1/2000
B= 3/2.4/3. ....2001/2000
B = 3.4....2001/2.3....2000
B =2001/2
tính:A=\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2000\sqrt{1999}+1999\sqrt{2000}}\)
\(\frac{1}{n\sqrt{n+1}+\sqrt{n}\left(n+1\right)}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)
sau đó tách ra là ok
Cho A= 2000/1 +1999/2 + 1998/3 +.... +1/2000 +2000
B= 1+ 1/2 +1/3 +1/4+..... +1/2000
Tính A/B
Các bn giúp mình với nha mình đang cần gấp. Cảm ơn ạ
Cho A= 2000/1 +1999/2 + 1998/3 +.... +1/2000 +2000
B= 1+ 1/2 +1/3 +1/4+..... +1/2000
Tính A/B
Các bn giúp mình với nha mình đang cần gấp. Cảm ơn ạ
Ta có:
\(\frac{A}{B}=\frac{\frac{2000}{1}+\frac{1999}{2}+\frac{1998}{3}+...+\frac{1}{2000}+2000}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)
\(\Leftrightarrow\frac{A}{B}=\frac{\left(\frac{2000}{1}+1\right)+\left(\frac{1999}{2}+1\right)+\left(\frac{1998}{3}+1\right)+...+\left(\frac{1}{2000}+1\right)+2000+1}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)
\(\Leftrightarrow\frac{A}{B}=\frac{\frac{2001}{1}+\frac{2001}{2}+\frac{2001}{3}+...+\frac{2001}{2000}+2001}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)
\(\Leftrightarrow\frac{A}{B}=\frac{2001\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}\right)}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)
\(\Leftrightarrow\frac{A}{B}=2001\)
Tính:
a, 3/4 * 2/9 + 1/3 = b, 1/4 : 1/3 - 1/2 =
a: =6/36+1/3=1/6+1/3=1/6+2/6=3/6=1/2
b: =3/4-1/2=3/4-2/4=1/4
\(a,\dfrac{3}{4}\times\dfrac{2}{9}+\dfrac{1}{3}=\dfrac{1}{6}+\dfrac{2}{6}=\dfrac{3}{6}=\dfrac{1}{2}\\ b,\dfrac{1}{4}:\dfrac{1}{3}-\dfrac{1}{2}=\dfrac{1}{4}\times\dfrac{3}{1}-\dfrac{2}{4}=\dfrac{3}{4}-\dfrac{2}{4}=\dfrac{1}{4}\)
a,34×29+13=16+26=36=12b,14:13−12=14×31−24=34−24=14
A= 2000/1+ 1999/2 + 1998/3 + ... + 1/2000 + 2000 và B= 1/1 +1/2 + 1/3 + ... 1/2000
Tính A.B
1/2 + 1/3 + 1/4 + ... + 1/2000 / 1999/1 + 1998/2 + 1997/3 +...+ 1999/1
(1-1/2).(1-1/3).(1-1/4)...(1-1/1999).(1-1/2000)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{1999}\right)\left(1-\frac{1}{2000}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{1998}{1999}.\frac{1999}{2000}=\frac{1.2.3...1998.1999}{2.3.4...1999.2000}=\frac{1}{2000}\)
\(\left(1-\frac{1}{2}\right).\left(1.\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{1999}\right).\left(1-\frac{1}{2000}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{1998}{1999}.\frac{1999}{2000}\)
\(=1.\frac{1}{2000}\)
\(=\frac{1}{2000}\)
(1-1/2) * (1-1/3) * (1-1/4) * .... * (1-1/1999) * (1-1/2000)
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{1999}\right).\left(1-\frac{1}{2000}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{1998}{1999}.\frac{1999}{2000}\)(Rút gọn trên tử với dưới mẫu nhé)
\(=\frac{1}{2000}\)