Cho tam giác ABC có 3 góc đều nhọn và có trực tâm H, biết góc BHC = 120 độ. Tính \(\dfrac{AH}{BC}\)
cho tam giác nhọn ABC có góc A = 60 độ , trực tâm H. Gọi M là điểm đối xứng với H qua BC
a) Cm: tam giác BHC= tam giác BMC
b) tính góc BMC
a) M đối xứng H qua BC
-> BC là đường trung trực MH
-> CH = CM ; BH = BM
Xét tam giác BHC và tam giác BMC:
CH = CM (cmt)
BC : chung
BH = BM (cmt)
-> Tam giác BHC = tam giác BMC (c-c-c)
b) Xét tứ giác ADHG:
\(\widehat{A}+\widehat{AGH}+\widehat{ADH}+\widehat{GHD}=360^o\)
\(\rightarrow\widehat{GHD}=360^o-\widehat{A}-\widehat{AGH}-\widehat{ADH}\)
\(\rightarrow\widehat{GHD}=360^o-60^o-90^o-90^o=120^o\)
\(\rightarrow\widehat{GHD}=\widehat{BHC}=120^o\)( đối đỉnh )
Mà \(\widehat{BHC}=\widehat{BMC}\)( tam giác BHC = tam giác BMC )
\(\rightarrow\widehat{BMC}=120^o\)
Bài 1.Cho tam giác nhọn ABC, trực tâm H. Gọi K là điểm đối xứng với H qua BC.
a) Chứng minh hai tam giác BHC và BKC bằng nhau.
b) Cho góc BAC=70 độ. Tính số đo góc BKC
a) Ta có:
K đối xứng với H qua BC
⇒ BC là trung trực của HK
⇒ BH=BK; CH=CK
Xét ΔBHC và ΔBKC có:
BH=BK (cmt)
CH=CK (cmt)
BC: cạnh chung
Do đó ΔBHC = ΔBKC(c.c.c)
b) Ta có:
ˆBHK = ˆBAH + ˆABH (góc ngoài của ΔABH)
ˆCHK = ˆCAH+ ˆACH (góc ngoài của ΔACH)
⇒ ˆBHC = ˆBHK + ˆCHK
= ˆBAH + ˆABH + ˆCAH + ˆACH
= ˆBAC + ˆABH + ˆACH
Ta lại có:
ˆBAC+ˆABH = 90o (BH⊥AC)
ˆBAC+ˆACH = 90o (CH⊥AB)
⇒2ˆBAC+ˆABH+ˆACH=180o
⇒ˆABH+ ˆACH = 180o− 2ˆBAC
Do đó:
ˆBHC =ˆBAC+ 180o− 2ˆBAC= 180o− ˆBAC= 180o−70o = 110o
Mặt khác:
ˆBHC = ˆBKC (ΔBHC = ΔBKC)
⇒ˆBKC=110
Cho tam giác ABC nhọn, góc A = 70 độ, H là trực tâm (giao điểm 3 đường cao). M đối xứng với H qua BC.
a) C/m tam giác BHC = tam giác BNC.
b)Tính góc BNC?
Có tam giác ABC nhọn. Trực tâm H và AH=BC. Tính góc BAC
Cho tam giác ABC có 3 góc nhọn. Về phía ngoài của tam giác ABC ta vẽ các tam giác đều ABD và ACE. I là trực tâm của tam giác ABC, H là trung điểm của BC. Tính góc IEH
có 3 tam giác thì lấy 3 tam giác đó ghép lại
cho tam giác nhọn abc,trực tâm h.Gọi k là điểm đối xứng với h qua bc.
a)chứng minh tam giác bhc và bkc bằng nhau
b)cho góc bac=70 độ .Tính số đo góc bkc
a: Ta có: H và K đối xứng nhau qua BC
nên BC là đường trung trực của HK
Suy ra: BH=BK và CH=CK
Xét ΔBHC và ΔBKC có
BH=BK
BC chung
HC=KC
Do đó: ΔBHC=ΔBKC
Cho tam giác nhọn ABC,có góc A=60o ,trực tâm H.Gọi M là điểm đối xứng với H qua BC
a)Chứng minh tam giác BHC=BMC
b) Tính góc BMC
a. Vì M đối xứng với H qua trục BC
⇒ BC là đường trung trực của HM
⇒ BH = BM ( tính chất đường trung trực)
CH = CM ( tính chất đường trung trực)
Suy ra: ∆ BHC = ∆ BMC (c.c.c)
b. Gọi giao điểm BH với AC là D, giao điểm của CH và AB là E
H là trực tâm của ∆ ABC
⇒ BD ⊥ AC, CE ⊥ AB
Xét tứ giác ADHE ta có:
\(\widehat{DHE}=360^0-\left(\widehat{A}+\widehat{H}+\widehat{E}\right)\)
\(=360^0-\left(60^0+90^0+90^0\right)=120^0\)
\(\widehat{BHC}=\widehat{DHE}\) (đối đỉnh)
∆ BHC = ∆ BMC (chứng minh trên)
\(\Rightarrow\widehat{BMC}=\widehat{BHC}\)
Suy ra:\(\widehat{BMC}=\widehat{DHE}=120^0\)
Cho tam giác nhọn ABC,có góc A=60o ,trực tâm H.Gọi M là điểm đối xứng với H qua BC
a)Chứng minh tam giác BHC=BMC
b) Tính góc BMC
a) Ta có: M đối xứng với H qua BC
Suy ra BC là đường trung trực của đoạn thẳng BC
mà B thuộc đường trung tực của đoạn thẳng BC suy ra BM=BH
và C thuộc đường trung trực của đoạn thẳng BC suy ra CM=CH
Xét tam giác BMC và tam giác BHC có: BM=BH (chứng minh trên), MC=MH(chứng minh trên), BC chung
Suy ra tam giác BMC=BHC
b) Trong tam giác ABC có AM là đường trung trực đồng thời là đường cao của cạnh BC suy ra tam giác ABC cân
Suy ra góc ABC = góc BCA=( 180o - 60o ) : 2= 60o
mà BM và CM là đường phân giác( tam giác ABC cân) suy ra góc MBC = góc MCB= 60 : 2=30o
Suy ra góc BMC= 180o - 30o + 30o = 120o
mà góc BMC= góc BHC suy ra góc BHC= 120o
Bạn có thể giải thích câu b rõ hơn dược không Lê Thị Hồng Hạnh!!!!!!!!!! do mình chua thấy tam giác ABC cân tai đâu....bạn giải thích dc hk@@
cho tam giác ABC có 3 góc nhọn, trực tâm H, vẽ hình bình hành AHCD đường thẳng đi qua D va song song với BC cắt đoạn thẳng AH tại E.
a/ cmr: ABCDE cùng thuộc 1 đường tròn.
b/ góc BAE = góc DAC.
C/ gọi O là tâm đường tròn ngoại tiếp tam giác ABC, M là trung điểm của BC đường thẳng AM cắt OH tại G. cm G là trọng tâm của tam giác ABC.
d/ gia sư OD = a, hãy tính độ dài đường tròn ngoại tiếp tam giác BHC qua A.