Cho phân sốA=2n+3/n+1
Cho phân số
A = \(\dfrac{13}{n-1}\)(n ∈ Z)
a, Số nguyên n phải thoả mãn điều kiện gì để phân số A tồn tại
b, Tìm phân só A khi n = 0; n = 5; n = 7
1Viết phép chia dưới dạng phân số
a)(-3):4 b)1:20 c)(-3):(-7)
\(a,\dfrac{-3}{4}\\ \\b,\dfrac{1}{20}\\ c,\dfrac{-3}{-7}\)
1) Tìm số nguyên n để phân số sau có giá trị là số nguyên:
a) -5/n-2 (viết dưới dạng phân số) b) n-5/n+1 (phân số) c)3n-7/n+1 (phân số)
2) Chứng minh với mọi số nguyên n các phân số sau tối giản:
a) 2n+1/2n+2 (phân số) b) 2n+5/2n+3 (phân số)
3) Cho M=1.2.3.....2004.(1+1/2+1/3+...+1/2004). Chứng minh: M chia hết cho 5.
4) Tìm số nguyên a và b sao cho: a/9-1/bb=1/3.
bài 1: với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản
A=2n+1/2n+2
B=2n+3/3n+5
Bài 2:
a) Cho phân số: N=5n+7/2n+1( n thuộc Z, n khác -1/2). Tìm n để N là phân số tối giản
b) Cho phân số: P=5-2n/4n+5 ( n thuộc Z, n khác -5/4). Tìm n để P là phân số tối giản
giúp mk với
mk sẽ tick cho!!
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
các bn giải hộ mk bài 2 ik
thật sự mk đang rất cần nó!!!
Bài 15. Cho phân số A= 2n+ 3 / 6n +4 (n thuộc N) . Với giá trị nào của n thì A rút gọn được.
Bài 16. Tìm tất cả các số nguyên n sao cho các phân số sau có giá trị là số nguyên
A) 12/3n-1
b)2n+3/7
c)2n+5 / n-3
\(a,3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
3n-1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | loại | 0 | 1 | loại | loại | loại | loại | -1 | loại | loại | loại | loại |
c, \(\dfrac{2\left(n-3\right)+9}{n-3}=2+\dfrac{9}{n-3}\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
n-3 | 1 | -1 | 3 | -3 | 9 | -9 |
n | 4 | 2 | 6 | 0 | 12 | -6 |
Tính phân số
A, 2/3 + 1/5 . 10/7
B, 2/7 + 5/7 . 14/25
C, 7/12 - 27/7 . 1/18
D, 3/10 . (-5/6) - 1/8
`a, 2/3 + 1/5 . 10/7`
`= 2/3 + 10/35`
`=2/3 +2/7`
`=14/21 + 6/21`
`=20/21`
`b, 2/7 + 5/7 . 14/25`
`= 2/7 +2/5`
`= 10/35+14/35`
`= 24/35`
`c, 7/12 - 27/7 . 1/18`
`= 7/12 - 3/14`
`= 31/84`
`d, 3/10 . (-5/6) - 1/8`
`= -1/4 -1/8`
`= -2/8 -1/8`
`= -3/8`
a)
\(\dfrac{2}{3}+\dfrac{1}{5}.\dfrac{10}{7}\)
\(=\dfrac{2}{3}+\dfrac{2}{7}\)
\(=\dfrac{14}{21}+\dfrac{6}{21}\)
\(=\dfrac{20}{21}\)
b)
\(\dfrac{2}{7}+\dfrac{5}{7}.\dfrac{14}{25}\)
\(=\dfrac{2}{7}+\dfrac{2}{5}\)
\(=\dfrac{10}{35}+\dfrac{14}{35}\)
\(=\dfrac{24}{35}\)
c)
\(\dfrac{7}{12}-\dfrac{27}{7}.\dfrac{1}{18}\)
\(=\dfrac{7}{12}-\dfrac{3}{14}\)
\(=\dfrac{98}{168}-\dfrac{36}{168}\)
\(=\dfrac{31}{84}\)
d)
\(\dfrac{3}{10}.\left(-\dfrac{5}{6}\right)-\dfrac{1}{8}\)
\(=-\dfrac{1}{4}-\dfrac{1}{8}\)
\(=-\dfrac{2}{8}-\dfrac{1}{8}\)
\(=\dfrac{-3}{8}\)
Cho 12n+1/2n+3 tìm n để
a,12n+1/2n+3 là 1 số nguyên
b, 12n+1/2n+3 là 1 phân số
a) Ta có: \(\frac{12n+1}{2n+3}=\frac{6\left(2n+3\right)-17}{2n+3}=6-\frac{17}{2n+3}\)
Để \(\frac{12n+1}{2n+3}\)là số nguyên thì \(\frac{17}{2n+3}\)là số nguyên
=> 2n+3\(\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)
Ta có bảng
2n+3 | -17 | -1 | 1 | 17 |
n | -10 | -2 | -1 | 7 |
Cho phân số dạng 2n-3/2n+1
Tìm n biết giá trị phân số đó = 3/4Tìm số nguyên n để phân số đó là nguyêna,n=3
b,Goi ps can tim la A
de A co gia tri nguye <=>2n-3 chia het cho 2n+1
=>2n-3-(2n+1) chia het cho 2n+1
=>2 chia het cho 2n+1
=>2n +1 thuoc uoc cua 2={+-1,+-2}
Ta co bang gia tri
2n+1 1 -1 2 -2
n 0 -1 k co k co
a thì mk đoán mò đấy nhưng để mk xem cách giải cho
Bài 1: Cho phân số n - 1 / n - 2 ( n thuộc Z ; n khác 2 ). Tìm n để A là phân số tối giản
Bài 2: Với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản: A = 2n + 1 / 2n + 3
Câu 1:
gọi n-1/n-2 là M.
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) ⋮⋮d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 ⋮⋮d
=> d ∈∈Ư (1)
Ư (1) = {1}
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.