cho 2x^6 + y^2 - 2x^3y - 320 = 0. Gọi (x1;y1),...,(xn;yn) là tập nghiệm nguyên của phương trình . Tổng x1+ x2+...xn = ?
Tìm các cặp số nguyên x;y thỏa mãn:
a) 6x^2+10y^2+2xy-x-28y+18=0
b) 2x^6+y^2-2x^3y=320
tìm nghiệm nguyên của phương trính : 2x^6 +Y^2 -2X^3Y=320
\(2x^6+y^2-2x^3y=320\)
\(\Leftrightarrow x^6+\left(x^6-2x^3y+y^2\right)=320\)
\(\Leftrightarrow x^6+\left(x^3-y\right)^2=320\)
\(\Rightarrow x^6\le320\)
Mà\(x\in Z\)
\(\Rightarrow x^6=64;1;0\)
Xét từng trường hợp, bạn tìm ra được\(x^6=64\)thõa mãn
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
+ x=2
=>y=-8;24
+x=-2
=>y=8;-24
Vậy\(\left(x;y\right)=\left(2;-8\right);\left(2;24\right);\left(-2;8\right);\left(-2;-24\right)\)
số cặp (x,y) nguyên \(2x^6+y^2-2x^3y=320\)
Tìm nghiệm nguyên của phương trình \(2x^6+y^2-2x^3y=320\)
\(2x^6+y^2-2x^3y=320\) \(\Leftrightarrow x^6+\left(x^6-2x^3y+y^2\right)=320\)\(\Leftrightarrow\) \(\left(x^3\right)^2+\left(x^3-y\right)^2=320\)
Vì \(\left(x^3\right)^2\ge0\)và \(\left(x^3-y\right)^2\ge0\). Đồng thời \(\left(x^3\right)^2\)và \(\left(x^3-y\right)^2\)cũng là hai số chính phương nên :
( phân tích 320 thành tổng của 2 số chính phương )
\(\left(x^3\right)^2+\left(x^3-y\right)^2=8^2+16^2\) ( Do \(\sqrt[3]{16}\)không là 1 số nguyên nên \(x^3=8\))
Vậy ta có 4 trường hợp :
+) Trường hợp 1:
\(\hept{\begin{cases}\left(x^3\right)^2=8^2\\\left(x^3-y\right)^2=16^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x^3=8\\x^3-y=16\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-8\end{cases}}}\)( TM )
+) Trường hợp 2:
\(\hept{\begin{cases}x^3=8\\x^3-y=-16\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=24\end{cases}}\left(TM\right)}\)
+) Trường hợp 3:
\(\hept{\begin{cases}x^3=-8\\x^3-y=16\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-24\end{cases}\left(TM\right)}}\)
+) Trường hợp 4 :
\(\hept{\begin{cases}x^3=-8\\x^3-y=-16\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=8\end{cases}\left(TM\right)}}\)
Vậy phương trình có 4 cặp nghiệm (x;y) nguyên là (-2;8) , (-2;-24 ) , (2;-8) ; ( 2; 24 )
Tìm nghiệm nguyên: \(2x^6+y^2-2x^3y=320\)
số cặp x,y thỏa mãn phương trình\(2x^6+y^2-2x^3y=320\)
tìm số cặp (x;y) nguyên thỏa mãn pt \(2x^6+y^2-2x^3y=320\)
cái này trong violympic nè hình như la có 3 cạp hay sao ý ko nhớ lắm
Tìm nghiệm nguyên của phương trình :
\(2x^6+y^2-2x^3y=320\)
2x6−2x3y+y2−320=0⇔(y2−2x3y+x6)+(x6−320)=0⇔x6−320=−(y−x3)2≤0⇒x6−320≤0⇔0≤x6≤320⇔x≤\(\sqrt[6]{320}\)(320=26.5)
Vì x∈Z nên \(x\le2\) \(\Leftrightarrow\)x∈{−2;−1;0;1;2}
Từ đó tìm được y
(2x-8)^4+(3y+45)^2=0
(2x-10)^6+(x+y-7)^4=0
(5x-15)^8+(2x-y+4)^4=0
(2x-8)^4+(3y+45)^2=0
* a mũ 2 hay 4 hay 6 ,... ( những số tự nhiên chẵn khác 0 ) đều lớn hơn hoặc bằng 0 với mọi a
Áp dụng :
a) (2x-8)^4 + (3y+45)^2 = 0
Vì : (2x-8)^4 >=0 , (3y+45)^2 >=0 với mọi x,y
=> (2x-8)^4 + (3y+45)^2 >=0
Dấu "=" xảy ra khi : 2x-8=3y+45=0
->(x;y)=(4;-15)
Những câu sau làm tương tự, ta được :
b) ...
Dấu "=" xảy ra khi : 2x-10=0 và x+y-7=0
->x=5 và 5+y-7=0
->(x;y)=(5;2)
c) 5x-15=0 và 2x-y+4=0
->x=3 và 6-y+4=0
->(x;y)=(3;10)
d) Trùng câu a
a)x=4,y=-15
b)x=5,y=2
còn câu c) mik chịu