tìm các số nguyên x,y thỏa mãn : (x+1)(2y-5)=8
Tìm các số nguyên x,y thỏa mãn
a) xy + 2x + 2y = 3
b) 5/x + y/4 = 1/8
a; xy+2x + 2y =3
\(\Leftrightarrow x\left(y +2\right)+2y=3\)
\(\Leftrightarrow x\left(y+2\right)+2\left(y+2\right)=7\)
\(\Leftrightarrow\left(y+2\right).\left(x+2\right)=7\)
Do x;y\(\in\) Z nên y+2 ; x+2 \(\in\)Z
\(\Rightarrow\hept{\begin{cases}y+2=1\\x+2=7\end{cases}\Rightarrow\hept{\begin{cases}y=-1\\x=5\end{cases}}}\)
\(\hept{\begin{cases}y+2=7\\x+2=1\end{cases}\Rightarrow\hept{\begin{cases}y=5\\x=-1\end{cases}}}\)
\(\hept{\begin{cases}y+2=-1\\x+2=-7\end{cases}\Rightarrow\hept{\begin{cases}y=-3\\x=-9\end{cases}}}\)
\(\hept{\begin{cases}y+2=-7\\x+2=-1\end{cases}\Rightarrow\hept{\begin{cases}y=-9\\x=-3\end{cases}}}\)
Vậy (x;y)\(\in\)(5;-1) ; (-1;5) ; (-9;-3 ) ; (-3;-9)
a) xy + 2x + 2y = 3
=> x(y + 2) + 2y = 3
=> x(y + 2) + 2y + 4 = 7
=> x(y + 2) + 2(y + 2) = 7
=> (x + 2)(y + 2) = 7
Ta có 7 = 1.7 = (-1).(-7)
Lập bảng xét các trường hợp
x + 2 | 1 | 7 | -1 | -7 |
y + 2 | 7 | 1 | -7 | -1 |
x | -1 | 5 | -3 | -9 |
y | 5 | -1 | -9 | -3 |
Vậy các cặp (x;y) thỏa mãn là (-1;5) (5;-1) ; (-3; -9) ; (-9;-3)
b) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
=> \(\frac{20+xy}{4x}=\frac{1}{8}\)
=> 8(20 + xy) = 4x
=> 2(20 + xy) = x
=> 40 + 2xy = x
=> 2xy + 40 - x = 0
=> 2xy - x = -40
=> x(2y - 1) = -40
Vì y nguyên => 2y - 1 nguyên
mà 2y - 1 luôn không chia hết cho 2 với mọi y nguyên (1)
lại có x(2y - 1) = - 40
=> 2y - 1 \(\in\)Ư(-40) (2)
Từ (1) (2) => \(2y-1\in\left\{5;-5;1;-1\right\}\)
Khi 2y - 1 = 5 => x = -8
=> y = 3 ; x = -8
Khi 2y - 1 = -5 => x = 8
=> y = -2 ; x = 8
Khi 2y - 1 = 1 => x = -40
=> y = 1 ; x = -40
Khi 2y - 1 = - 1 => x = 40
=> y = 0 ; x = 40
Vậy các cặp (x;y) thỏa mãn là ( -8 ; 3) ; (8 ; -2) ; (-40 ; 1) ; (40 ; 0)
a. xy + 2x + 2y = 3
<=> x ( y + 2 ) + 2 ( y + 2 ) = 7
<=> ( x + 2 ) ( y + 2 ) = 7
x + 2 | y + 2 | x | y |
7 | 1 | 5 | - 1 |
1 | 7 | - 1 | 5 |
- 7 | - 1 | - 9 | - 3 |
- 1 | - 7 | - 3 | - 9 |
Vậy các cặp ( x ; y ) nguyên thỏa mãn đề bài là ( 5 ; - 1 ) ; ( - 1 ; 5 ) ; ( - 9 ; - 3 ) ( - 3 ; - 9 )
tìm các số nguyên thỏa mãn (x+1)(2y-5)=8
\(\left(x+1\right)\left(2y-5\right)=8\)
\(\Rightarrow x+1,2y-5\inƯ\left(8\right)=\left\{1,2,4,8,-1,-2,-4,-8\right\}\)
Ta có bảng :
x+1 | 1 | 2 | 4 | 8 | -1 | -2 | -4 | -8 |
2y-5 | 8 | 4 | 1 | 2 | -8 | -4 | -1 | -2 |
x | 0 | 1 | 7 | 3 | -2 | -3 | -4 | -5 |
y | \(\frac{13}{2}\) | \(\frac{9}{2}\) | 3 | \(\frac{7}{2}\) | \(\frac{-3}{2}\) | \(\frac{1}{2}\) | 2 | \(\frac{3}{2}\) |
Do \(x,y\in Z\)
\(\Rightarrow\left(x,y\right)=\left\{\left(7,3\right);\left(-9,2\right)\right\}\)
Cái cuối bạn làm khác đi nha , các cặp số như trên . Mình làm sai 2 câu cuối
1/ tìm x,y nguyên dương thỏa mãn: \(x^2-y^2+2x-4y-10=0\)0
2/giải pt nghiệm nguyên :\(x^2+2y^2+3xy+3x+5y=15\)
3/tìm các số nguyên x;y thỏa mãn:\(x^3+3x=x^2y+2y+5\)
4/tìm tất cả các nghiệm nguyên dương x,y thỏa mãn pt:\(5x+7y=112\)
1)Tìm tất cả các cặp số nguyên x,y thỏa mãn : x2=y(y+1)(y+2)(y+3)
2)Cho các số nguyên x,y,z thỏa mãn S=x+2y+3z+2016 và P=(x+2015)5+(2y-2016)5+(3z+2017)5
Mk đang cần gấp . Mơn mấy thím trc
a)Tìm tất cả các cặp số nguyên x, y thỏa mãn:x(2y+3)=y+1
b) Tìm tất cả các số nguyên của x thỏa mãn:(-1)+3(-5)+7 ...+ x = 2002
a) => 2xy +3x=y+1
=> 2xy+3x-y=1
=> x(2y+3) - 1/2 (2y+3) +3/2 =1
=> (x-1/2)(2y+3)=1-3/2= -1/2
=> (2x-1)(2y+3)=-1
ta có bảng
...........
1. Tìm tất cả các số nguyên x, y thỏa mãn : x(2y+3)=y+1.
2. Tìm tất cả các số nguyên X thỏa mãn
a) (x+2) là bội của (×^2-7)
b) (-1)+3+(-5)+7+...+x=2002.
Giải giúp mình đi . Giải cụ thể nhé.
tìm số nguyên x,y thỏa mãn (x-3)(2y+1)=-8
(x-3)(2y+1)=-8
=> 2y+1=-8/(x-3)
=> 2y+1 thuộc Ư(8)={-1;1;-2;2;-4;4;-8;8}
Mà 2y+1 là số lẻ => 2y+1 thuộc {-1;1}
* 2y+1=-1 => (x-3)(-1)=-8 => x-3=8 => x=11
* 2y+1=1 => 1(x-3)=-8 => x-3=-8 => x=-5
Vậy các cặp x,y tìm được là: (11;-1);(-5;1)
tìm các số nguyên `x,y` thỏa mãn `x^3 -xA^2 y+3x-2y-5=0`
Em kiểm tra lại đề bài, chỗ \(A^2\)
tìm các số nguyên x,y thỏa mãn :
x2+3x+5=xy+2y
\(x^2+3x+5=xy+2y\\ \Leftrightarrow x^2+3x-xy-2y+5=0\\ \Leftrightarrow x\left(x+2\right)-y\left(x+2\right)+\left(x+2\right)+3=0\\ \Leftrightarrow\left(x+2\right)\left(x-y+1\right)=-3=\left(-1\right)\cdot3=\left(-3\right)\cdot1\)
\(TH_1:\left\{{}\begin{matrix}x+2=-3\\x-y+1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=-5\end{matrix}\right.\to\left(-5;-5\right)\\ TH_2:\left\{{}\begin{matrix}x+2=3\\x-y+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\to\left(1;3\right)\\ TH_3:\left\{{}\begin{matrix}x+2=1\\x-y+1=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=3\end{matrix}\right.\to\left(-1;3\right)\\ TH_4:\left\{{}\begin{matrix}x+2=-1\\x-y+1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-5\end{matrix}\right.\to\left(-3;-5\right)\)
Vậy \(\left(x;y\right)=\left(-5;-5\right);\left(1;3\right);\left(-1;3\right);\left(-3;-5\right)\)